

Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

J.E. Brooker, D.L. Dietrich, S.A. Gokoglu, D.L. Urban and G.A. Ruff NASA John H. Glenn Research Center

45th International Conference on Environmental Systems, 12 – 16 July 2015, Bellevue, Washington

- Fire is a significant hazard to both crew and vehicle on exploration missions
- On long-duration missions abandoning the vehicle and a rapid return to earth are not possible
- Fire requires fuel, oxidizer and an ignition source
 - All three present by necessity on manned spacecraft
- Large-scale fires are very complex:
 - Turbulent, chemically reacting flow
 - Complex chemical kinetics involving large hydrocarbon molecules, solid and gas phases and chlorinated or fluorinated species

Uniqueness of Microgravity

Flame characteristics and flammability limits change

- Low-speed, sub-buoyant flows
- Normal gravity testing not necessarily worst-case
- Particulate size and transport changes
 - Terrestrial standards for detection not necessarily applicable
- Small, sealed, confined volume with limited egress

- Terrestrial large-scale fire models and experiments are of limited utility
 - Upcoming Saffire experiments are largest to date in microgravity
- Must rely on numerical models validated and calibrated against the very limited experimental data

Develop a comprehensive modeling capability

- 1. Large Eddy Simulation (LES) CFD models:
 - Builds off of efforts to model ISS fire detection
 - Detailed treatment of flow inside the vehicle
 - Computationally intensive for realistic spacecraft configurations involving chemically reacting flows

2. Lumped Capacity Models (LCM):

- Builds off of efforts to estimate survivable fires for spacecraft
- Not as detailed as LES, but more amenable to parametric studies

Normal Gravity

4

- Treat the spacecraft volume as a single 'zone'
 - Can be extended to multiple zones
- Assume each zone has a uniform temperature and species concentration
- Solve for energy and species conservation in each zone with a prescribed fire

$$\left(\frac{d\mathcal{Q}}{dt}\right)_{loss} + \left(\frac{d\mathcal{Q}}{dt}\right)_{fire} + \left[\sum_{i} \dot{n}_{i}h_{i} - \sum_{e} \dot{n}_{e}h_{e}\right] = \frac{dU_{cv}}{dt}$$

$$\frac{dn_i}{dt} = (\dot{n_i})_{gen} - (\dot{n_i})_{con}$$

 Creates a system of ODEs quickly solved by a range of opensource and commercial solvers

45th International Conference on Environmental Systems

- Empty, sealed cubic volume 3 m on a side
- Prescribed heat input
- 1. Adiabatic wall
 - All energy transferred to gas
- 2. Isothermal wall
 - Heat transfer to the wall

- αt^2 growth first 34 s ($\alpha = 5.1 \times 10^{-3} \text{ kW/s}^2$)
- Constant fire for next 126 s
- Linear decay to 0 for 10 s
- Approximates expected profile from Saffire I

- Saffire experiment will be conducted in Orbital Cygnus Pressurized Cargo Module after de-mating from ISS (still in LEO)
- Use FDS to simulate the flow and heat transfer in the PCM while the large fuel sample is burned in Saffire

Initial Conditions	Simulation Conditions	FDS Parameters
20 C	Isothermal Shell 20 C	Radiative $Frac = 0$
1.0 atm	Adiabatic Solid Objects	Suppression OFF
Air (0.21/0.79)	Heat Release at 30 s	Radiation OFF
	Fuel Mass = 0.0541 kg	Stratification OFF
	Saff. Flow = $0.104 \text{ m}^3/\text{s}$	Gravity OFF
	ECLSS = 0.0524 m ³ /s	
	Gas Vol. = 10.6 m ³	

Observe flow and heat transfer in realistic Saffire/PCM configuration

FDS Configuration - Saffire

45th International Conference on Environmental Systems

FDS Saffire Computation Results

MPCV Hatch Re-Design Study

- MPCV considered hatch re-design to save weight
- Needed to understand how accidental fire (launchpad) would impact crew/vehicle
- Assess the efficacy of the Cabin Pressure Equalization Valve (CPE)
- Perform parametric studies for different fire scenarios, CPE actuation, vehicle interiors.

MPCV Parametric Study

- FDS can perform high-fidelity simulations of flows inside spacecraft with fires/heat release.
 - Can show localized results for combustion product accumulation, oxygen depletion, etc.
 - Simulations can take days for long simulation times and/or complex geometries for a single configuration (vehicle interior and flow condition)
- LCM more amenable to large-scale parametric studies
 - Can easily run hundreds of simulations over wide-ranging conditions such as vehicle volumes, fire sizes, relief valve sizes, etc.
 - Lack the localized fidelity present in LES
- Use FDS to calibrate or tune the parameters in the LCM for better fidelity
- Currently both models use a prescribed fire. Eventually need models to make *a-priori* predictions of fire based on vehicle interior contents
- Models can be extended to include ECLSS scrubbing and flows

• FPDS pursuing two model approaches to fire in spacecraft

- CFD simulations using FDS build on efforts to model fire detection in ISS.
- LCM models treat spacecraft as a single volume and build off of efforts to define and predict a survivable fire in a spacecraft
- The complexity of real fires necessitate this approach
 - CFD provides detailed predictions in realistic geometries but requires large computational time – not amenable to parametric studies
 - LCM models suited for parametric studies and engineering evaluation of evolving spacecraft designs
- Demonstrated compatibility of model approaches in simple configuration and capability of both models
 - Used FDS to simulate flows inside of Orbital Cygnus during Saffire
 - Used LCM to assist in the evaluation of hatch re-design in the MPCV
- FPDS will continue to develop both model approaches
 - Incorporate detection into both models
 - Develop the capability to make *a priori* predictions of fire