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Preliminaries

An Excel® worksheet containing solutions to 
all examples are available from Tim Risch at 
Timothy.K.Risch@NASA.gov

Excel®, Visual Basic for Applications®, and 
Microsoft® are registered trademarks of 
Microsoft Corporation.

mailto:Timothy.K.Risch@NASA.gov
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Nomenclature - I

𝑐 speed of light, 2.99792458 × 108 m/s

𝐶1 Planck’s first constant,  2 ℎ𝑐2 = 1.191043 × 108 W-m4/m2-sr

𝐶2 Planck’s second constant,   ℎ𝑐/𝑘 = 14,387.75 m-K

𝐶3 Constant in Wien’s displacement law

𝐶4 Constant in equation for maximum blackbody intensity

𝐷𝑖  detector spectral response function for detector i

 ℎ Planck’s constant, 6.626068 × 10-34 J-s

𝑘 Boltzmann constant, 1.3806503 × 10-23 J/K

𝑖𝑏,𝜆(, 𝑇) spectral emissive radiance of a perfect blackbody at 
wavelength  and temperature 𝑇, W/m2-sr-m

𝑖𝜆(, 𝑇) spectral radiant intensity of a non-blackbody at wavelength  and 
temperature 𝑇, W/m2-sr-m
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Nomenclature - II

𝑖𝑏(𝑇) total radiant intensity of a blackbody at temperature 𝑇,

W/m2-sr-m

𝑖(𝑇) total radiant intensity non-blackbody at temperature 𝑇,

W/m2-sr-m

𝑇 actual surface temperature, K

𝑇𝑟 ratio temperature, K

𝑇 measured surface temperature at wavelength  assuming a 

perfect emitter, K
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Nomenclature - III

 𝑇 total emissivity of a non-blackbody at temperature 𝑇

 𝑖 wavelength-averaged emissivity for detector 𝑖

 𝑟 wavelength averaged emissivity ratio for detector 1 and 2,  2/ 1

𝜆 monochromatic emissivity of a non-blackbody at wavelength 

and temperature 𝑇

   𝑇 inferred total emissivity of a non-blackbody at temperature  𝑇

𝑟 emissivity ratio at two wavelengths 1 and 2,  1
2

Δ𝑖 bandwidth of narrow-band detector i, m

Λ equivalent wavelength,  𝜆1𝜆2 (𝜆2− 𝜆1), m

𝜆𝑖 wavelength of detector i, m
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Nomenclature - IV

𝜆𝑙 lower wavelength on wide-band radiative thermometer, m

𝜆𝑢 upper wavelength on wide-band radiative thermometer, m

𝜋 ratio of perimeter to diameter for a circle, 3.14159265358979

σ Stefan-Boltzmann constant, 
𝜋𝐶1

15

𝜋

𝐶2

4
= 5.670401 × 10-8

W/m2-K4

Ω solid angle, sr

Note that the nomenclature or symbology for radiation is not standard across 
all disciplines or sources. For consistency, we have adopted the naming and 
symbolic convention used by Howell, J. R. , R. Siegel, and M. P. Mengüç, 
Thermal Radiation Heat Transfer, Fifth Edition, Taylor & Francis, New York, 
2010.
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Practical Measurement Techniques

“To point out of the advantages that would 
arise from ascertaining the heat of a body at a 
very high temperature would be unnecessary, 
the importance of the subject is allowed.”
- J. M’Sweeny, M.D. - 1829
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Radiation Temperature Measurement - I

 For a blackbody, there are three primary ways to 
determine the temperature by measuring:

› The total emitted radiation

› The distribution across wavelengths or the total 
radiation across a wavelength band

› The emitted radiation at one wavelength

 Measuring any of these should uniquely determine 
the temperature
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Radiation Temperature Measurement - II

 As discussed before, real surfaces with emissivities less 
than one do not behave like a blackbody.

 Instead, they emit radiation at rates less than a blackbody

 This introduces a new problem, for any given 
measurement of a non-ideal surface, we now have two 
unknowns:

› Temperature

› Emissivity

 Without assuming either one or the other, the state of 
the surface cannot be uniquely determined.
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Three Possible Solutions:

1. For a single measurement, assume the emissivity and 
calculate the temperature (spectral method)

2. Make two measurements at different wavelengths and 
assume a relationship between the emissivities at each 
wavelength and calculate a single temperature (ratio 
method)

3. Make multiple measurements at different wavelengths and 
assume some functional form of the emissivity and find the 
best fit to the temperature and emissivity (multi-spectral 
method)

For now, all of the examples assume narrow-band detectors, but 
later we show how to accommodate wide-band detectors
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Some Temperature Definitions

 “True” Surface Temperature - The actual temperature of the 
surface; what we would measure with a thermometer not 
affected by the surface emissivity. This is the temperature we 
would measure if, for example, we used a contact 
thermometer such as a thermocouple.

 “Equivalent Blackbody” Surface Temperature - The 
temperature we would infer from a radiation thermometer if 
we assumed that the surface was a perfect emitter. Again, 
because all real surfaces emit less than a blackbody, the 
equivalent blackbody surface temperature will always be 
lower than the true surface temperature.
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Method 1 – Spectral Method - I

From a single equivalent blackbody temperature 
measurement 𝑇𝜆, assume the spectral emissivity ε𝜆
and calculate the “true” surface temperature 𝑇. 
This can be achieved by using the definitions of 
black and gray emissive intensity:

And then solving for the true surface temperature:

𝑖 𝜆 𝑇 = ε𝜆∙ 𝑖 𝑏,𝜆 𝑇 = 𝑖 𝑏,𝜆 𝑇𝜆 (11)

ε𝜆 ∙
𝐶1

𝜆5 𝑒𝐶2/𝜆𝑇 − 1
=

𝐶1
𝜆5 𝑒𝐶2/𝜆𝑇𝜆 − 1

(12)
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Solving for true surface temperature this is:

Equation 13 can be simplified under the special 
case when 𝐶2/𝜆𝑇𝜆 ≫ 1 (Wien’s approximation) 
then:

1

𝑇
=

𝜆

𝐶2
ln ε𝜆 ∙ 𝑒

𝐶  2 𝜆𝑇𝜆 − 1 + 1 (13)

1

𝑇
=

1

𝑇𝜆
+

𝜆

𝐶2
ln ε𝜆 (14)

Method 1 – Spectral Method - II
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Example 4 - I

E4: What is the true surface temperature when a surface at an 
equivalent blackbody temperature of 3,820 K is measured with a 
0.5-𝜇m wavelength detector and an emissivity of 0.8 is 
assumed?
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Example 4 - II

A4: The wavelength temperature product is 3,820 K times 
0.5 𝜇m or 1,910 𝜇m-K. This is much less than 𝐶2 or 14,388 m-K. 
So, Wien’s approximation is valid and routine bb_tstw can be 
used to give:

1

𝑇
 =
1

𝑇λ
+

λ

𝐶2
ln 𝜀𝜆 =

1

3,820 𝐾
+

0.5 m

14,388 m−K
ln 0.8

𝑇 = 3,937 K

Note that this value is within about 0.1 K of the value calculated 
with the full Planck equation.
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Example 5 - I

E5: Repeat Example 4, except with an 8-𝜇m detector. What is the 
true surface temperature? 
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Example 5 - II

A5: The wavelength temperature product is 3,820 K times 8 𝜇m 
or 30,560 𝜇m-K. This is greater than 𝐶2 or 14,388 m-K. So, the 
full Planck equation (Equation 1) must be used using routine 
bb_tst:

𝑇 =
𝐶2/𝜆

ln ε𝜆 ∙ 𝑒
𝐶  2 𝜆𝑇𝜆 − 1 + 1

𝑇 =
 14,388 m−K 8 𝜇m

ln 0.8 ∙ 𝑒  14,388 m−K 8 𝜇m 3820 𝐾 − 1 + 1
= 4,579 K

If indeed we had used Wien’s approximation, the calculated true 
surface temperature would have been over 7,200 K and off by 
over 2,600 K.
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 We can see by looking at Equation 13, that the 
correction to the measured surface temperature is 
dependent on the wavelength and when Wien’s 
approximation applies in Equation 14, the correction 
is proportional to the wavelength. This suggests that 
using a short wavelength detector will minimize the 
effect of emissivity on our temperature 
measurement.

Method 1 – Spectral Method - V
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Spectral Method Error Estimation - I

By differentiating Equation 13 with respect to 
emissivity, we can determine the sensitivity of the 
computed “true” surface temperature to the assumed 
emissivity for a detector 𝑖 with wavelength 𝜆𝑖. The 
result is:

applying Wien’s approximation, this becomes:

𝑑 ln 𝑇

𝑑 ln 𝜀𝜆𝑖
=
𝜀𝜆𝑖
𝑇

𝑑𝑇

𝑑𝜀𝜆𝑖
= −

𝜆𝑖𝑇

𝐶2
∙
𝑒  𝐶2 𝜆𝑖𝑇 − 1

𝑒  𝐶2 𝜆𝑖𝑇
(15)

𝑑 ln 𝑇

𝑑 ln 𝜀𝜆𝑖
= −

𝜆𝑖𝑇

𝐶2
(16)
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Using the sensitivity and an estimate of the uncertainty 
in the emissivity produces an estimate of the 
uncertainty in the surface temperature:

∆𝑇

𝑇
=

𝑑 ln 𝑇

𝑑 ln 𝜀𝜆𝑖
∙
∆𝜀𝜆𝑖
𝜀𝜆𝑖

(17)

Spectral Method Error Estimation - II
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Spectral Method Error Estimation - III
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Example 6 - I

E6: If the spectral emissivity of graphite at 0.53 𝜇m is estimated 
to be 0.8 with an estimated uncertainty of 20%, what is the 
estimated uncertainty in the temperature if a detector at this 
wavelength indicates an equivalent blackbody temperature of 
2,950 K?
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Example 6 - II

A6: The wavelength temperature product is 2,950 K times 
0.53 𝜇m or 1,563.5 𝜇m-K. This is much less than 𝐶2 or 
14,388 m-K. So, Wien’s approximation is valid and Equation 14 
and routine bb_tstw can be used:

Therefore, since the emissivity uncertainty is estimated to be 
20%, the resulting uncertainty in surface temperature is 20% ×
11% or 2.2%. For a temperature of 3,023 K, the absolute 
uncertainty is 67 K.

𝑑 ln 𝑇

𝑑 ln 𝜀𝜆𝑖
= −

0.53𝜇m ∙ 3,023 K

14,388 m−K
= −11%

1

𝑇
 =
1

𝑇λ
+

λ

𝐶2
ln 𝜀𝜆 =

1

2,950 K
+

0.52 m

14,388 m−K
ln 0.8 = 3.038 × 10−3 1/K

𝑇 = 3,023 K
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Example 7 - I

E7: Repeat example 6 except for a detector with a wavelength of 
5.8 𝜇m where the emissivity is estimated to be 0.8 with an 
estimated uncertainty of 20% at a temperature of 2,950 K.
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Example 7 - II

A7: The wavelength temperature product is 2,950 K times 5.8 𝜇m or 
17,110 𝜇m-K. This is greater than 𝐶2 or 14,388 m-K, so, Wien’s 
approximation is not valid and the full Planck equation (Equation 1) 
and routine bb_tst must be used.

𝑇 =
 14,388 m−K 5.8 𝜇m

ln 0.8 ∙ 𝑒  14,388 m−K 5.8 m∙ 2,950 K − 1 + 1
= 3,445 K

𝑑 ln 𝑇

𝑑 ln 𝜀𝜆𝑖
=
𝜆𝑖𝑇

𝐶2
∙
𝑒

 𝐶2 𝜆𝑖𝑇𝜆𝑖 − 1

𝑒
 𝐶2 𝜆𝑖𝑇𝜆𝑖

=
5.8m ∙ 3,445 K

14,388 m−K
∙
𝑒
14,388m−K

5.8m ∙3,445 K
− 1

𝑒
14,388m−K

5.8m ∙3,445 K

= −71%

Therefore, since the emissivity uncertainty is estimated to be 20%, 
the resulting uncertainty in temperature is 20% × 71% or 14%. For a 
temperature of 3,445 K, the absolute uncertainty is about 491 K! 
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Rule 1

 When the emissivity is unknown and must be 
estimated, the most accurate surface temperature 
measurement is made when a detector with a 
wavelength as short as possible is used.
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Determination of Emissivities at Other Wavelengths

Once the true surface temperature has been 
determined from a detector at one wavelength, the 
emissivity at other detector wavelengths can be 
determined from:

Of course, using a measurement at the same 
wavelength will return our initial guess for 𝜀𝜆.

𝜀𝜆 =
𝑒𝐶2/𝜆𝑇 − 1

𝑒𝐶2/𝜆𝑇𝜆 − 1
(18)
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Emissivity Uncertainty Estimation - I

The uncertainty in the emissivity at a second 
wavelength 𝜀𝜆𝑖based on the estimated uncertainty in a 

given wavelength 𝜀𝜆1 is, by differentiation:

If Wien’s approximation is valid at both wavelengths 
then:

𝑑 ln 𝜀𝜆𝑖
𝑑 ln 𝜀𝜆1

=
𝜀𝜆1
𝜀𝜆𝑖

∙
𝑑𝜀𝜆𝑖
𝑑𝜀𝜆1

=
𝜆1
𝜆𝑖
∙
𝑒  −𝐶2 𝜆1𝑇 − 1

𝑒  −𝐶2 𝜆𝑖𝑇 − 1
(19)

𝑑 ln 𝜀𝜆𝑖
𝑑 ln 𝜀𝜆1

=
𝜆1
𝜆𝑖

(20)
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Emissivity Uncertainty Estimation - II

 Unlike with temperature, the uncertainty in the 
computed emissivity decreases with increasing 
wavelength.

 The error is approximately inversely proportional to 
the ratio of the two wavelengths.

 Therefore emissivities derived from longer 
wavelength detectors have less uncertainty. However, 
since the emissivity is usually a strong function of 
wavelength, values at long wavelengths may or may 
not be useful if emissivities over the entire 
wavelength band are needed.
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Emissivity Uncertainty Estimation - III
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Example 8 - I

E8: A 0.53-m wavelength detector is used to determine the 
surface temperature. The measured equivalent blackbody 
temperature from this detector is 1,950 K and the emissivity is 
estimated to be 0.6 with an estimated uncertainty of 25%. What 
are the inferred emissivities and uncertainties at 1.0 m and 
5.8 m if detectors at both wavelengths indicate equivalent  
blackbody temperatures of 1,740 K?
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Example 8 - II

A8: The true surface temperature using Equation 13 and routine 
bb_tst is:

𝑇 =
 14,388 m−K 0.53 𝜇m

ln 0.8 ∙ 𝑒  14,388 m−K 0.53 m∙ 1,950 K − 1 + 1
= 2,024 K

The emissivity at 1.0 m using Equation 15 and routine bb_emiss 
is:

𝜀𝜆2 =
𝑒  14,388 𝜇m−K 1.0 𝜇m−2,024 K − 1

𝑒  14,388 𝜇m−K 1.0 𝜇m−1,740 K − 1
= 0.313
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Example 8 - II

The sensitivity to the emissivity at wavelength 2 based on the 
assumed emissivity at wavelength 1 using Equation 19 and 
routine bb_dlne2dlne1 is:

𝑑 ln 𝜀𝜆2
𝑑 ln 𝜀𝜆1

=
0.53 𝜇m

1.0 𝜇m
∙
𝑒  14,388 𝜇m−K 0.53 𝜇m ∙2,024 K − 1

𝑒  14,388 𝜇m−K 1.0 𝜇m ∙2,024 K − 1
= 0.530

And the relative uncertainty in the emissivity is:

∆𝜀𝜆2
𝜀𝜆2

=
𝑑 ln 𝜀𝜆2
𝑑 ln 𝜀𝜆1

∙
∆𝜀𝜆2
𝜀𝜆2

= 0.530 ∙ 25% = 13.3%

The emissivity at 5.8 m using routine bb_emiss is:

𝜀𝜆2 =
𝑒  14,388 𝜇m−K 5.8 𝜇m−2,024 K − 1

𝑒  14,388 𝜇m−K 5.8 𝜇m−1,740 K − 1
= 0.761
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Example 8 - III

The sensitivity to the emissivity at wavelength 2 based on the 
assumed emissivity at wavelength 1 using routine 
bb_dlne2dlne1 is:

𝑑 ln 𝜀𝜆2
𝑑 ln 𝜀𝜆1

=
0.53𝜇m

5.8𝜇m
∙
𝑒  14,388 𝜇m−K 0.53𝜇m ∙2,024 K − 1

𝑒  14,388 𝜇m−K 5.8𝜇m ∙2,024 K − 1
= 0.129

And the relative uncertainty in the emissivity is:

∆𝜀𝜆2
𝜀𝜆2

=
𝑑 ln 𝜀𝜆2
𝑑 ln 𝜀𝜆1

∙
∆𝜀𝜆2
𝜀𝜆2

= 0.129 ∙ 25% = 3.2%

Note that the emissivity uncertainty at 5.8 𝜇m is four times less 
than at 1𝜇m.
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Rule 2

 The uncertainty in the spectral emissivity at a given 
wavelength decreases approximately inversely with 
the wavelength that is used.
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Method 2 – Ratio method - I

Make measurements 𝑇𝜆1and 𝑇𝜆2with detectors at two different 

wavelengths 𝜆1 and 𝜆2. Assume a ratio for the spectral 
emissivities at the two wavelengths ε𝑟 (could be 1) and then 
calculate the true temperature 𝑇 by solving the following:

and then calculate the individual emissivities from:

ε𝑟 =
ε𝜆1
ε𝜆2

=
 𝑖𝑏,𝜆1 𝑇𝜆1 𝑖𝑏,𝜆1 𝑇

 𝑖𝑏,𝜆2 𝑇𝜆2 𝑖𝑏,𝜆2 𝑇
(21)

 𝜀𝜆1 = 𝑖𝑏,𝜆1 𝑇𝜆1 𝑖𝑏,𝜆1 𝑇

𝜀𝜆2 =  𝑖𝑏,𝜆2 𝑇𝜆2 𝑖𝑏,𝜆2 𝑇
(22)
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Method 2 – Ratio method - II

If Wien’s approximation is valid, the approximate solution for the 
true temperature 𝑇 can be calculated directly by:

where Λ is an equivalent wavelength 

and 𝑇𝑟 is the ratio temperature, the temperature of an equivalent 
blackbody having the same ratio of spectral radiances at the two 
specified wavelengths as that of the target.

1

𝑇
=

1

𝑇𝑟
−

𝛬

𝐶2
ln 𝜀𝑟 (23)

Λ =
𝜆1𝜆2

𝜆2 − 𝜆1
(24)

1

𝑇𝑟
=

Λ

𝜆1𝑇𝜆1
+

Λ

𝜆2𝑇𝜆2
(25)
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Method 2 – Ratio method - III

Once the true surface temperature is known, the 
emissivities can then be determined by:

𝜀𝜆𝑖 = exp
𝐶2
𝜆𝑖

1

𝑇𝜆𝑖
−
1

𝑇
(26)
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Ratio Method Observations

 For an emissivity ratio of 1, the calculated ratio temperature of the 
instrument is the true surface temperature.

 The equivalent wavelength can be much greater than either of the two 
individual wavelengths when the difference between the two 
wavelengths is small.

 As the difference between the two wavelengths increases, the value of 
the equivalent wavelength approaches 1.

 For Wien’s approximation to be valid, the wavelength temperature 
product of the two individual detectors need to be small, not the 
product of the equivalent temperature and the effective wavelength.

 Equation 22 for the true surface temperature is identical to the 
equation for surface temperature in the spectral method (Equation 14) 
with the effective wavelength replacing the single wavelength and the 
ratio temperature replacing the single detector temperature.



Understanding Radiation Thermometry 42Tim Risch

Example 9 - I

E9: For a two-band radiation thermometer with detector 
wavelengths at 0.5 and 0.6 m, what are the true surface 
temperature and the spectral emissivities when the measured 
equivalent blackbody temperatures at the two wavelengths are 
2,800 and 2,750 K, respectively and an emissivity ratio of 0.9 is 
assumed?
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Example 9 - II

A9: In this case, Wien’s approximation is valid so that using the 
approximate method from Equation 23 and calculating the 
effective wavelength Λ from Equation 24 using routine bb_elam is:

Λ =
0.5 m ∙ 0.6 m

0.6 m − 0.5 m
= 3.0 m

Using Equation 25, the ratio temperature 𝑇𝑟 from routine 
bb_etemp is:

𝑇𝑟 =
3.0m

0.5 𝑚 ∙ 2,800 K
+

3.0 𝑚

0.6 𝑚 ∙ 2,750 K

−1

= 3,080 K

and using Equation 22 and routine bb_tstw, the true surface 
temperature is:

𝑇 =
1

3,080 K
−

3.0 𝜇m

14,388 𝜇m–K
∙ ln 0.9

−1

= 3,304 K
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Example 9 - III

Knowing the individual measured detector temperatures and the 
surface temperature, the emissivities are determined using 
Equation 18 and routine bb_emiss:

𝜀𝜆1 =
𝑒14,388 𝜇m–K/0.5 μm∙3,304 K − 1

𝑒14,388 𝜇m–K/0.5 μm∙2,800 K − 1
= 0.209

𝜀𝜆2 =
𝑒14,388 𝜇m–K/0.6 μm∙3,304 K − 1

𝑒14,388 𝜇m–K/0.6 μm∙2,750 K − 1
= 0.232

So that  𝜀𝜆1 𝜀𝜆2 = 0.9, consistent with our initial assumption.
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Ratio Method Sensitivities

The sensitivity of the true surface temperature to the emissivity 
ratio can be calculated for the case where Planck’s law is valid by 
differentiating equation 17. This is:

When Wien’s approximation is valid, then the sensitivity can be 
easily determined utilizing the similarity to the spectral method 
as discussed before. The sensitivity then becomes:

𝑑 ln 𝑇

𝑑 ln 𝜀𝜆𝑖
=
Λ𝑇

𝐶2
(28)

𝑑 ln𝑇

𝑑 ln 𝜀𝑟
=

𝑒  𝐶2 𝜆1𝑇 −1 ∙ 𝑒  𝐶2 𝜆2𝑇 −1

𝐶2𝑒
 𝐶2 𝜆2𝑇

𝜆2𝑇
∙ 𝑒  −𝐶2 𝜆1𝑇 −1 −

𝐶2𝑒
 𝐶2 𝜆1𝑇

𝜆1𝑇
∙ 𝑒  𝐶2 𝜆2𝑇 −1

(27)
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Example 10 - I

E10: For the same conditions as Example 9, what would the error in 
the true surface temperature be if an assumed emissivity ratio of 1.0 
was used but the actual ratio of the surface emissivities was 0.9?
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Example 10 - II

A10: This problem can be solved two ways: directly or using 
sensitivities. We will use sensitivities first.

In this case Wien’s approximation is valid since both the 
wavelength-temperature products are smaller than 𝐶2. The 
sensitivity from Equation 26 is:

𝑑 ln 𝑇

𝑑 ln 𝜀𝜆𝑖
=
3.0 𝜇m ∙ 3,304 K

14,388 𝜇m − K
= 0.688

So that the estimated uncertainty in temperature is:

0.688 ∙ 0.1 = 6.9% or 228 K
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Example 10 - III

Rather than using sensitivities, we can calculate the difference 
directly:

For an emissivity of 1.0, the true surface temperature is just the 
ratio temperature, or 3080 K. Therefore, the error is:

3080 K − 3,304 K = 224 K

almost exactly equal to the linear approximation using 
sensitivities.
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Example 11 - I

E11: For a two-band radiation thermometer with detector 
wavelengths at 4.0 and 8.0 m, what is the error introduced 
when an emissivity ratio of 1.0 is assumed, when in fact the 
emissivity ratio of the sample has a ratio of 0.9? Assume the 
measured spectral temperatures at the two wavelengths are 
2,800 and 2,750 K, the same as in Problem 9.
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Example 11 - II

A11: Since the products of 𝑇𝜆 and 𝜆 for both wavelengths are not 
less than 𝐶2 or 14,388, 𝜇m-K, the full Planck Equation must be 
used to solve for the true surface temperature (Equation 31 and 
routine bb_tratio). 

𝑒−𝐶2/𝜆2𝑇𝜆2−1

𝑒−𝐶2/𝜆2𝑇−1
∙

𝑒−𝐶2/𝜆1𝑇−1

𝑒−𝐶2/𝜆1𝑇𝜆1−1
− 𝜀𝑟 = 0
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Example 11 - III

The calculated values for true temperatures are:

𝜀𝑟 = 0.9, 𝑇 = 4,118 K

𝜀𝑟 = 1.0, 𝑇 = 2,974 K

The difference is 1,144 K!

This example points out the large error using long 
wavelengths and the need to use short wavelengths 
whenever possible.
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Example 11 - IV

The sensitivity of the emissivity ratio to surface temperature is 
(Equation 27):

𝑑 ln 𝜀𝑟
𝑑 ln𝑇

=
1

𝑇
∙
𝑒  𝐶2 𝜆2𝑇 − 1

𝑒  𝐶2 𝜆1𝑇 − 1
∙

𝐶2
𝜆2𝑇

𝑒
𝐶2
𝜆2𝑇

𝑒  𝐶2 𝜆1𝑇 − 1

𝑒  𝐶2 𝜆2𝑇 − 1 2
−

𝐶2
𝜆1𝑇

𝑒  𝐶2 𝜆1𝑇

𝑒  𝐶2 𝜆2𝑇 − 1

Since the temperature change is so great, linear sensitivities 
extrapolated from one point will not be accurate.

However, the calculated sensitivities are:

𝜀𝑟 = 0.9,
𝑑 ln 𝑇

𝑑 ln 𝜀𝑟
= −3.77

𝜀𝑟 = 1.0,
𝑑 ln 𝑇

𝑑 ln 𝜀𝑟
= −2.56
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Example 11 - V

The temperature error can be estimated using a centered 
average of the temperature and sensitivity:

∆T = − 4,118 K + 2,974 K ∙
3.77 + 2.56

4
∙ 0.1 = 1,122 K

almost exactly the same as the direct method.
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Further Observations

 The selection of the optimal detector wavelengths for 
the ratio method is based upon two competing 
factors. As difference in the two detector 
wavelengths approaches zero the value of the 
effective wavelength goes to infinity and therefore 
tends to drive the temperature uncertainty higher. 
However, at the same time the smaller the difference 
in wavelengths makes the estimation of the 
emissivity ratio more accurate and therefore drives 
the temperature uncertainty lower.
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Rule 3

 The optimal detector wavelengths for the ratio 
method are based on the two competing factors: 1) 
the need to keep the wavelength difference small to 
ensure an accurate assumed ratio, but 2) not too 
small that the effective wavelength increases and 
becomes too large.
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Multispectral Methods - I

 Multispectral methods are an extension of the ratio method 
where a larger number of detectors are used.

 Multiple measurements are then used to perform a best fit to 
single temperature and wavelength relationship.

 The emissivity relationship can be a constant value or some 
other more complex function such as a polynomial.
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Multispectral Methods - II

 Advantages

› Large number of detectors reduces noise and averages 
errors inherent in measurements

 Disadvantages

› Requires more complex hardware

› Multiple detectors increases data collection requirements 
and requires increased processing

› Data may not provide an identifiably unique solution unless 
a large number of measurements are made
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Multispectral Hardware Utilizing Dispersive 

Spectrometer and Silicon Array Detector

Focusing 
Mirrors

Grating

Array Detector

Entrance Slit
32-Channel Array Silicon Detector
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Example 12 - I

E12: Given data to 
the right from a 32-
channel silicon 
array detector, 
calculate the 
spectral emissivity 
and true surface 
temperature if the 
spectral emissivity 
is assumed to 
follow a second-
order polynomial 
with wavelength. 3450
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Example 12 - II

A12: The solution requires that we find values for 𝑇, 𝑎0, 𝑎1, and 
𝑎2 that minimize the function 𝑓:

where
𝑓 =  

𝑖

𝑛

𝜀𝜆𝑖 ∙ 𝑖𝑏,𝜆𝑖(𝑇) − 𝑖𝜆𝑖(𝑇𝜆𝑖)
2

(29)

𝜀 = 𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0 (30)
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Results:

𝑇 = 3,802 K

𝑎2 = −0.06222
𝑎1 = 0.0610
𝑎0 = 0.7347

Example 12 - III
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Wide-Bandwidth Detectors

“The laws of light and of heat translate each other;—so do 
the laws of sound and colour; and so galvanism, electricity 
and magnetism are varied forms of this selfsame energy.”
— Ralph Waldo Emerson
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Wide-Bandwidth Detectors - I

 Up until now, we have considered only narrow-band 
detectors, ones in which the wavelength band has 
been limited

 Sometime, using wide-band detectors prove to be an 
advantage

 However, using wide-band detectors is more difficult 
and requires additional understanding to properly 
interpret the measured data
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Wide-Bandwidth Detectors - II

 Advantages

› Provide a higher signal since the signal is measured over a 
wider band

› Require less hardware since the wavelength limiting device 
is eliminated

 Disadvantages

› Introduces non-linearities in the calibration because the 
blackbody intensity varies with wavelength and the response 
of the detector is not uniform across all wavelengths

› Makes data reduction and analysis more complex
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Wide-Bandwidth Detectors - III

• The spectral 
response curves  
as a function of 
wavelength 
𝐷 𝜆 are 
available for 
many detectors 
from 
manufacturers.

 Often, though, these are only nominal specifications and can vary with the 
actual detector and can change over time for some detectors.

 Measuring the response function requires more specialized equipment and 
methods not available in most laboratories, so that the exact response is 
often not available.

 However, only estimates of spectral response are needed since many times 
the difference between the actual and nominal response is sufficient.
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Wide-Bandwidth Detectors - III

Non-linearities in the calibration are introduced because the 
measured signal is the net product of the detector response 
multiplied by the blackbody emission intensity.

× =

Wavelength Wavelength Wavelength
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Wide-Bandwidth Detectors - IV

 Using a wide-band detector can then require relating the 
integral of the blackbody function 𝑖𝑏,𝜆 , 𝑇 multiplied by the 
detector response 𝐷  across the bandwidth

 When measuring materials with emissivities that vary over 
wavelength, the data analysis becomes even more complex 
and requires the inclusion of the emissivity 𝜀() with 

wavelength

 So that the measured signal becomes a function of the:

And not just 𝑖𝑏,𝜆 , 𝑇 .

 
𝑙

𝑢
𝐷  ∙ 𝜀() ∙ 𝑖𝑏,𝜆 , 𝑇 𝑑 (31)
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Wide-Bandwidth Detectors - V

Often, the analysis will use the average wavelength in the center 
of the band to calculate the blackbody intensity and assume a 
uniform intensity across the band, so that:

where:

  =
1

2
𝑙 + 𝑢 and ∆ = 𝑢 − 𝑙 (33)

𝐼 𝑙 , 𝑢, 𝑇 =  
𝒍

𝒖
𝑖𝑏,𝜆 , 𝑇 𝑑 ≅ 𝑖𝑏,𝜆  , 𝑇 ∆ (32)
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Example 13 - I

E13: What is the non-linearity introduced by averaging the 
response of a detector covering the range of 1 to 4 m at 
temperatures between 600 to 1100 K? Assume a uniform spectral 
response function.
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Example 13 - II

A13: The problem requires that we compare:

 
𝑙

𝑢
𝑖𝑏,𝜆 , 𝑇 𝑑

to:

𝑖𝑏,𝜆  , 𝑇 ∆

where

  =
1

2
𝑙 + 𝑢 and ∆ = 𝑢 − 𝑙

So   = 2.5 m and ∆ = 3.0 m. The comparison is 
shown on the following page.
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Example 13 - III

Note the non-linearity in the calibration and the high error at 
low intensities.

y = 1.1998x - 442.47
R² = 0.9972
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Example 14

E14: What is the non-linearity introduced by averaging the 
response of a detector covering the range of 0.25 to 1.05 m at 
temperatures between 2000 to 3000 K? Assume a linearly 
increasing detector spectral response function as shown below:
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Example 14 - II

A14: The problem requires that we compare:

 
𝑙

𝑢
𝐷  · 𝑖𝑏,𝜆 , 𝑇 𝑑

to:

𝐷   ∙ 𝑖𝑏,𝜆  , 𝑇 ∆

where

  =
1

2
𝑙 + 𝑢 and ∆ = 𝑢𝑙 − 1

So   = 0.65 m and ∆ = 0.8 m. The comparison is shown on 
the following page.
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Example 14 -III

The result is similar to problem 13. Again note the non-linearity 
in the calibration and the high error at low intensities.

y = 0.6531x - 7737.6
R² = 0.9961
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 When measurements are made of materials with emissivities 
that vary over wavelength, the data analysis becomes even 
more complex and requires the inclusion of the emissivity with 
wavelength:

 
𝑙

𝑢
𝐷(𝜆) ∙ 𝜀() ∙ (𝑖𝑏,𝜆 , 𝑇 𝑑 = 𝑖(𝒍, 𝑢, 𝑇) (33)

Wide-Bandwidth Detectors - V
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 When the two or more detectors are used, the 
relationships for the unknown temperatures and 
spectral emissivities involve integrals over the 
wavelength band.

 Similar to the narrow-band ratio method, we can 
devise an analogous way to determine temperature 
and a wavelength-averaged emissivity.

Wide-Bandwidth Detectors - VI
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For two, wide-band detectors measuring equivalent blackbody 
temperatures of 𝑇1 and 𝑇2, we can define an equivalent ratio 
method where we solve the following:

Where  ε1 and  ε2 are wavelength average emissivities. The next 
example will demonstrate this method.

 ε𝑟 =
 ε1
 ε2
=
 𝜆1𝒍
𝜆1𝒖𝐷1(𝜆)(𝑖𝑏,𝜆 𝑇1 𝑑𝜆

 𝜆1𝒍
𝜆1𝒖𝐷1(𝜆)(𝑖𝑏,𝜆 𝑇 𝑑𝜆

∙
 𝜆2𝒍
𝜆2𝒖𝐷2(𝜆)(𝑖𝑏,𝜆 𝑇 𝑑𝜆

 𝜆2𝒍
𝜆2𝒖𝐷2(𝜆)(𝑖𝑏,𝜆 𝑇2 𝑑𝜆

(34)

Wide-Bandwidth Detectors - VII
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Alternatively, we can approximate the wide-band signal using the 
average value across the band so that:

Given 𝑇1 and 𝑇2we calculate 𝑇 that satisfies either Equation 34 
or 35.

 ε𝑟 =
 ε1
 ε2
=
𝑖𝑏,𝜆 𝑇1, 𝜆1

𝑖𝑏,𝜆 𝑇, 𝜆1
∙
𝑖𝑏,𝜆 𝑇, 𝜆2

𝑖𝑏,𝜆 𝑇2, 𝜆2
(35)

Wide-Bandwidth Detectors - VIII
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E15: A commercial Silicon/InGas sandwich detector has the detector 
response below.  If the Silicon detector measures 3000 K and the InGas 
measures 2800 K equivalent blackbody temperatures, what are the 
average spectral emissivities for the two wavelengths and the true 
surface temperature assuming an emissivity ratio of 0.9?

Example 15 - I
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es
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Example 15 - II

A15: We model the detector response function by the line 
segments below. The problem requires that we solve Equation 
34 or 35 with ε𝑟 = 0.9 and 𝑇1 = 3000 K and 𝑇2 = 2800 K.
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Example 15 - III

Parameter Integrated 
Band

Averaged 
Band

𝑇, K 3,236 3,166

 𝜀1 0.64 0.70

 𝜀2 0.71 0.78

Note that while the temperature is reasonably close 
between the two methods (70 K or 2%) the emissivities are 
less accurate, differing by about 8%.

 ε𝑟 = 0.9
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Example 16 - I

E16: This examples demonstrates the method of reducing data 
from wide-band detectors using effective, average wavelengths.

Consider a dual-band 
instrument with spectral 
bands covering 1 to 
4.5 m and 2 to 13.5 m. The 
detector response functions 
are shown.  The average 
detector wavelengths are 2.75 
and 7 m. Using the average 
detector wavelengths, what is 
the surface temperature and 
what is the inferred emissivity 
assuming an emissivity ratio 
of 1?
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Example 16 - II

Our example assumes a gray 
material which means that 
the spectral emissivity  is 

independent of 
wavelength. We assume 
the emissivity is equal to 
0.65 and the true surface 
temperature is 3,000 K. 
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Example 16 - III

Using the function bb_tiibl, we can calculate what the measured equivalent 
blackbody temperatures 𝑇𝜆 would be by solving the following equation given 
the detector response functions 𝐷 𝜆 , the emissivity 𝜀 (independent of 
wavelength), and the spectral blackbody radiant intensity:

The calculated blackbody temperatures for detectors 1 and 2 are 2,589 and 
2,426 K, respectively.

𝜀  
𝜆𝑙

𝜆𝑢

𝐷 𝜆 𝑖𝑏,𝜆 𝑇 𝑑𝜆 =  
𝜆𝑙

𝜆𝑢

𝐷 𝜆 𝑖𝑏,𝜆 𝑇𝜆 𝑑𝜆
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Example 16 - IV

Using the average wavelengths, we can calculate the equivalent blackbody 
temperature 𝑇 and emissivity for an emissivity ratio of 1.0 from the two 
detector equivalent blackbody temperatures 𝑇1 and 𝑇2.  This solved using the 
function bb_tratio which solves the following equation:

For 𝜀𝑟=1, the result is:

𝑇=2,879 K and 𝜀 = 0.79

Versus the correct values of 𝑇=3,000 K and 𝜀 = 0.65

This demonstrates the uncertainty introduced using wide-bandwidth 
detectors when assuming a single, average wavelength for each detector.

𝑒  −𝐶2 𝜆2𝑇𝜆2−1

𝑒  −𝐶2 𝜆2𝑇−1
∙

𝑒  −𝐶2 𝜆1𝑇−1

𝑒  −𝐶2 𝜆1𝑇𝜆1−1
− 𝜀𝑟 = 0
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Example 17 - I

E17: For the final problem, we construct a problem that 
demonstrates not only the complexity in reducing data from 
wide-band detectors, but also the difficulty in interpreting the 
data.
Consider the same dual-
band instrument with 
spectral bands covering 1 
to 4.5 m and 2 to 13.5 
m as used in the 
Example 16. The detector 
response functions are 
shown. 
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Example 17 - II

The material has a spectral 
emissivity as a function of 
wavelength as shown. The 
true surface temperature is 
3,000 K. Based on this, the 
calculated equivalent 
blackbody temperatures for 
the two detectors are 2,949 
and 2,719 K respectively. If an 
emissivity ratio of 1 is 
assumed for the two 
detectors, what are the 
calculated true surface 
temperature and spectral 
emissivities?
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Example 17 - III

For the given true surface temperature 𝑇, the calculated 
equivalent blackbody temperatures 𝑇𝜆𝒊for each detector can be 

obtained by solving the following:

and as previously stated for detectors 1 and 2 are 2,941 and 
2,841 K, respectively.

 
𝜆𝒊𝒍

𝜆𝒊𝒖

𝜖𝝀𝒊 𝜆 𝐷𝑖 𝜆 𝑖𝑏,𝜆 𝑇 𝑑𝜆 =  
𝜆𝒊𝒍

𝜆𝒊𝒖

𝐷𝑖 𝜆 𝑖𝑏,𝜆 𝑇𝝀𝒊 𝑑𝜆
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Example 17 - IV

A17: Using the wide-band method with Equation 34 assuming an 
emissivity ratio  ε𝑟 = 1, the calculated true surface temperature is 
3,175 K with emissivities for the two detectors equal to 0.81 
(routine bb_itratio). This is a 179-K error. If an emissivity ratio of 
1.13 is assumed (equal to the ratio of the emissivities at the 
mean detector wavelengths), then a surface temperature of 
2,707 K is calculated and the error in surface temperature 
increases to 294 K. The corresponding emissivities are calculated 
to be 1.27 and 1.10 for detector 1 and 2, respectively. These are 
not physically realistic.
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Example 17 - V

If instead the equivalent narrow band assumption using Equation 
34 with an emissivity ratio of 1.13 (routine bb_tratio) is used, the 
calculated true surface temperature is 2,622 K with emissivities for 
detector 1 and detector 2 being 1.29 and 1.12, respectively. Using 
an emissivity ratio of 1 results in a calculated temperature of 
3,127 K and emissivities for both detectors equal to 0.88. 

While the assumption of unity emissivity ratio comes closer to the 
correct surface temperature in both the wide-band and equivalent 
narrow-band methods, the result is fortuitous since the actual 
emissivity ratio across the two bands is not actually one.

The difficulty is that over such a wide range of wavelengths, it is 
difficult to choose the proper ratio since the wavelength 
dependence on spectral emissivity generally is not known.
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Example 17 - VI

 𝛆𝒓 =1.0  𝛆𝒓 =1.16

Parameter
Integrated 

Band

Averaged 

Band

Integrated 

Band

Averaged 

Band

𝑇, K 3,175 3,127 2,707 2,623

 𝜀1 0.81 0.88 1.27 1.29

 𝜀2 0.81 0.88 1.10 1.12
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Rule 4

Unless other considerations dictate, avoid 
using wide-band detectors especially 
when accurate emissivities are needed.



Understanding Radiation Thermometry 93Tim Risch

Calibration

“Until you can measure something and express it 
in numbers, you have only the beginning of 
understanding.”
– Lord Kelvin
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Calibration

 Detectors are calibrated against a source providing a known 
spectral intensity at a given wavelength.

 However, it is often more convenient to express known 
calibration conditions in terms of an equivalent blackbody 
temperature, rather than a spectral intensity.

 The calibrated spectral intensity and blackbody temperature 
are equivalent and can be used to determine the system 
response accounting for detector nonlinearities, transmission 
losses, and electrical gains.
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Calibration Sources - I

 Broadband Sources

› Blackbody Thermal Cavity – Near UV 
to IR

› Incandescent Lamp – Visible to Near IR

› Deuterium Arc Lamp – UV to Visible

 Discrete Wavelength Sources

› Mercury Lamp

› Noble Gas (Neon, Argon, Krypton, 
Xenon) Lamp

Portable Blackbody Source

Deuterium Arc Lamp
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Blackbody Source

 A blackbody calibration source is an especially 
convenient and accurate calibration source.

 Recall, a perfect blackbody is an ideal emitter and 
absorbs all incident radiation regardless of the spectral 
character of directionality of the incident radiation.

 This behavior is simulated using a heated cavity 
designed to have an effective near unity emissivity.

 The specified calibration conditions can be determined 
by measuring the temperature of the cavity, rather than 
the absolute spectral radiance, like other sources.
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Diagram of Blackbody Calibration Source
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Calibration Sources - II

Resistively Heated, High-temperature Blackbody Furnace – 500 to 3000 C
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s = 2.4208 × ib, + 0.023
R² = 0.9926
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Blackbody calibration data for 0.656-m detector. The blackbody temperature 
was preset and the signal voltage measured. Plotting this versus the calculated 
radiant intensity produces a straight line of signal versus calculated intensity.
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Calibration Uncertainty

 All calibration sources have inherent error in the spectral 
intensity output.

 For blackbody sources, this error manifests itself in the 
uncertainty in the cavity temperature measurement

 Uncertainty in the cavity intensity propagates error just like 
the emissivity.

 Uncertainty in cavity temperature can be calculated from the 
quantity 𝑑𝑇/𝑑𝜀.
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Example 18 - I

E18: A blackbody source is estimated to have an 
uncertainty of 10 K and is used to perform a single-
point calibration on two detectors, 1) a short-
wavelength, 0.5-m detector and 2) a longer-
wavelength 3 m detector. For an unknown material, 
the equivalent blackbody temperatures are measured 
to be 1,600 and 1,500 K, respectively. What is the value 
and the uncertainty in the derived emissivity at 3 m 
assuming the material has an emissivity of 0.8 0.1 at 
0.5 m?
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Example 18 - II

A17: The equivalent blackbody temperature from the measurement of the 
0.5-m detector for 𝑇𝜆1 = 1,600 K and 𝜀𝜆1= 0.8 is:

The calculated emissivity at 3 m is:

Assuming the temperature errors in the two calibration measurements are 
uncorrelated and random, the total uncertainty in the emissivity will be:

where Δ𝑇𝜆1 = 10K and 𝜀𝜆1 = 0.1.

𝑇 =
𝐶2
𝜆1

∙
1

ln 𝜀𝜆1 𝑒𝐶2/𝜆𝑇𝜆1 − 1 + 1
= 1,604 𝐾

𝜀𝜆 =
𝑒𝐶2/𝜆𝑇𝜆 − 1

𝑒𝐶2/𝜆𝑇 − 1
= 0.78

𝜀𝜆2 =
𝜕𝜀𝜆2
𝜕𝑇𝜆1

Δ𝑇𝜆1

2

+
𝜕𝜀𝜆2
𝜕𝑇𝜆2

Δ𝑇𝜆2

2

+
𝜕𝜀𝜆2
𝜕𝜀𝜆1

Δ𝜀𝜆1

2
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Example 18 - III

or, in terms of sensitivities:

evaluating terms gives:

𝑑 ln 𝜀𝜆2
𝑑 ln 𝜀𝜆1

=
𝜆1
𝜆2

∙
𝑒  −𝐶2 𝜆1𝑇−1

𝑒−  𝐶2 𝜆2𝑇−1
= 0.176

𝜀𝜆2
𝜀𝜆2

=
𝜕 ln 𝜀𝜆2
𝜕 ln 𝜀𝜆1

𝜕 ln 𝜀𝜆1
𝜕 ln𝑇𝜆1

Δ𝑇𝜆1
𝑇𝜆1

2

+
𝜕 ln 𝜀𝜆2
𝜕 ln𝑇𝜆2

Δ𝑇𝜆2
𝑇𝜆2

2

+
𝜕 ln 𝜀𝜆2
𝜕 ln 𝜀𝜆1

Δ𝜀𝜆1
𝜀𝜆1

2

𝑑 ln 𝜀𝜆1
𝑑 ln𝑇𝜆1

=
𝐶2
𝜆𝑇𝜆1

∙
𝑒𝐶2/𝜆𝑇𝜆1

𝑒𝐶2/𝜆𝑇𝜆1 − 1
= 18.0

𝑑 ln 𝜀𝜆2
𝑑 ln𝑇𝜆2

=
𝐶2
𝜆𝑇𝜆2

∙
𝑒𝐶2/𝜆𝑇𝜆2

𝑒𝐶2/𝜆𝑇𝜆2 − 1
= 3.33
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Example 18 - IV

So the estimated relative uncertainty is:

and therefore:

Note the uncertainty resulting from the calibration is on the 
same order as the estimation of the emissivity at 0.5 m.

𝜀𝜆2
𝜀𝜆2

= 0.176 ∙ 18.0 ∙
10

1,600

2

+ 3.33 ∙
10

1,500

2

+ 0.176 ∙
0.1

0.8

2

𝜀𝜆2
𝜀𝜆2

= 3.94 × 10−4 + 4.94 × 10−4 + 4.83 × 10−4 = 3.7%

𝜀𝜆2 = 0.78 0.029

𝜀𝜆2 = 0.78 ∙ 0.037 = 0.029

Detector 1 calibration Detector 2 calibration Emissivity
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Closing

“If this fire determined by the sun, be received on the blackest 
known bodies, its heat will be long retain'd therein; and hence 
such bodies are the soonest and the strongest heated by the 
flame fire…”
– Hermann Boerhaave
A New Method of Chemistry, 2nd edition (1741), 262
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Closing - I

 Radiation thermometry is a useful technique for measuring the 
temperature of bodies that cannot be readily measured by 
contact sensors.

 It is important to understand the uncertainty in radiation 
thermometry measurements and choose the characteristics of 
the instrumentation and the measurement method accordingly.

 The most accurate temperature measurements are obtained 
when using short wavelength detectors.

 The uncertainty in the derived spectral emissivity at a given 
wavelength decreases approximately inversely with the 
wavelength that is used, and therefore longer wavelength 
detectors provide more accurate emissivity measurements.
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Closing - II

 Combining measurements of two or more detectors can allow 
the simultaneous determination of both the temperature and 
the emissivity.

 However, the uncertainty in both the temperature and 
emissivity increase when the measurements of two detectors 
are combined.

 Multi-spectral methods using a large number of detectors can 
often provide more accurate temperature and emissivity 
values over a wider range of wavelengths.

 Prefer the use of narrow-band detectors over wide-band 
detectors unless other factors dictate.
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Summary of Radiative Thermometry 

Rules

 Rule 1- When the emissivity is unknown and must be estimated, the 
most accurate surface temperature measurement is made when a 
detector with a wavelength as short as possible is used.

 Rule 2 - The uncertainty in the spectral emissivity at a given 
wavelength decreases approximately inversely with the wavelength 
that is used.

 Rule 3 - The optimal detector wavelengths for the ratio method are 
based on the two competing factors: 1) the need to keep the 
wavelength difference small to ensure an accurate assumed ratio, 
but 2) not too small that the effective wavelength increases and 
becomes too large.

 Rule 4 -Unless other considerations dictate, avoid using wide-band 
detectors especially when accurate emissivities are needed.
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