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in engineering devices,

LANTY, OO

‘
ann.}:i and oritives have tiimumerable applications
Freqaenttv o knowledge of the per.
formance of such norzles and orifices under dynamie conditions

becomes important. For example, one may he concerned with s |

control or u stability analysis in whiel some relation between flow  retical work appears to have heen devoted principally to a study !

fhrcruntions and exit pressure fuetuations must be inedrporated.  of the bebavior of fdividual pulses, tather than of froquency Lo
Y

The usual analytieal procedure i these ciremmstances s to
postulate a0 quasi-steady relation betaeen flow eale and exit
pressure: that s, the low rate i3 tahen, at every tiuee instant, to
correspond to the instantancous exit pressure.  ‘This proecdure
cannot he adopted without some misgivings as to its validity,
especially if ﬂw frequency of the esit pressiire flactuntions is
high,

Beeause of the importanee of flow flnetuations through nozzles
and orifices,  considerable literature op the sobjeet hay de-
velaped. Much of this litevoture has been sammarized ina sarvey
artivle by Oppenhieiny 1112 The wajority of investigations has
been experimental in nsture, and most of these investigations have
beercdoevoted to determining the ofivet of pressure flnetuations on
arerage How.  Howoever, Sehaltz-Grunow [2] reponts that if the

¥ Ao, Consultsnt, The Frankiin Institute, Philadelplin, M.

2 Numbers in brackets desiunante Referenees at end ot puper.

~ Contributed Ly the Apphied Mechanies Division for presentation at
the Winter Annual Meeting, Newn York, N. Y., Novemher 05 30,

solild cngle subtended by the cone, the velocily of the (luid at the nozsle throat, Bhe aronstic

so-eajled “Strouhal number,” S - w3/, i less than 0.01, quasi-
stoady pressure-flow rolations are valid,  (Hore o is the angular

veloeity of the fluctusting exit pressure, 1 is the throat dinmeter,

amd {7 s the fluid veloeity at the throat.)  Corresponding theo-

response.?

The purpose of the present work is to prediet the amplitude and
phase relations hetween the instantancous flowrate and a sinu-
soidally fluetuating exit pressure in a conieal nozzle, Fig, 1. AL
though the ehosen geometry is, of course, extremely simple com-
pared with many in use, it is believed that the essentin) churac-
teristios of a compressible Hlaid espanding and avee lerating from o

TA paper usiug reffection apalysis to deal with problems akin, t() .

those trented hereis that of 1 u'\u'll 151,
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Fig. 1 Conical nozzle showing converging tphorically symmolric
inflow from stagnation conditions at infinity

~-Nomenclature

; ¢ = loeal neonstic veloeity ' ro= radius from coue apex
. == Joeal flow area r = alsa, residual funetion
A4 = ﬁmx arew where M o= 1 Il = radius, r, where M == 1 in conieal flow

£ o= dmuvinude of oseillation
PSS !‘;uh{ entlalipy
0= staguationanchalpy, b o p202

S = {fluid entropy
S = ulio, Strouhal number, wl)/»
S* = modified Strouhal number, a1 /2% j

P e o ASHE | (Dbeles pr o s 3
» A knowledge of the dynamic characteristics of nozzles and orifices is imporlunt in many
' coitrol and stability analyses of engineering deviees, 18 is usual in ussume that the in- X
staniuneons flowrate, for a given selof inlel conditions and outlel pressure, ts the same as .
%‘ 2 ‘ the nontransient value for the same operating conditions.  Recently, in connection with ‘
i s b e T o e s o the stabilily analwis of an externully presswrized thrust bearing, the validity of this
] E E :; Etf,/’ ! }‘ " ‘»/ “Z"n Iy ““, u.\.\f{{ﬂ/?lmﬂ Wi I/Ill&{l:’ll(’(l. The mmlysln prese wled Tn this paper was und#rhtl,m. o 3
i w i S 55 ER (R provide un answer,  The present unalvsis applies to any fluid, lyuid, or gas flowing S
& tnto a simple contcal nozzle,  The amplitude and pluese of the muss-Aux responie o a -
citys stnuwsotdally time var vul;f pressure fucluation al the pozgle exit are determined. o
% { approximate formula is given for these quantilies in terms of the nozsle throal area, tie

LE \A\"E LIBRA Y ONASA velocity ab the throawt, and the frequency of e pressire fluctuation. ’
CLEYE] ,

Wo= dimensionk ss perturbed stagnation enthalpy, 17 /o, { = time . .
M = loeal Mach number, ¢ /0 T = abgolute temperature Lo
N = amplitude factor U7 = fluid veloeity at sozzle throat
p = fluid pressure ‘ v locdl fluid velodity (veetorial in bold faee) .
o= amplitude of p//p oseillations U = aniliary funetion ;!
@ = amplitude of (oY /pr) oseillations w o= dimenstorless ungubr yvelociby of (Hrlllulmn .

: o Ed
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stagnation reservoit are well enough realized for the resulla to
have semi-quantitative practieal significance. 1t is recognized
that near the aperture of any eonienl nozzle the flow will cease to
be spherically symmetrieal hut, agatn, this effect is not deemed

- Jarge enough to defeat the purpose of the investigation.

In the analvsis, the flow is presutied ta be adiabatic and frice-
tion-free. Sueh assumptions are well known to be in close accord
with the facts. Under such eiretumstances, Kelvin's theorent

also assures that the flow is jerofationad, sinee it originates in a

reservoir of stagnant fluid, The fnid itself is assuned to exist
in thermadynamic equilibriuny and in a single phase. Otherwise,
the nature of the thud iy practically wnrestrieted; i, b may bea
liquid, vapor or gis.

Basic Propagation Eguation

To start the present analysis, we write down Fuler's equation,
the muss continuity equation, and the go-called “TdS" equation
of thermodynamies. Thus

v I c )
S y
Dt n ¢
Dinp
M, 2
Dl Vv 2)
' i
TdS = dh — dp (&)
. »

Here D/DE — 3/t + v § is the Stohes or Lamb operator, and
the other symbols, which nre standard, are defined in the Nomen-
¢lature, N

For an irrotational flow:

: /
(v =V (1)
s0 that equation (1) can he rewrttten sy
¥yt (%)
I v T - !
AN n ! 2 K
But sinee also, from equation (3)
i
Th o= Al (%)
,‘p

in nn isentropte fon, we obtain by eombining equations (5) and
(B) the following usefud result:

1

‘ B AR (7)

S

where H is the stagnation enthalpy: e, H -2 b b 02/2

. Another result involving the stagnation enthalpy is obtained
by first taking the sealar produet of equation (1) with the veloeity
v. Then

»?
T SR S R
e T Ve TVVEE T Y

- poe oy e N . . P '
where use hag been made of equation (6).  Finally, rearrangeroent.
of equation (8), together with the use of the isentropic relation
between pressire and enthalpy, gives

'I):'[ ) I op

e (9).
[ " poor | )
Do e
Now the veloeity of sonnd in ancisentropie mediam s
a - |(ap/op)s]™ e U}
A o consequenee, we snay write
I 10 o Inp
DA (1
at I p of ot
Taking the Stohesian derivative of equation 11, we obtain
n vy . D 9‘}_11“;_)' (12)
Diar Dt Deool .
But:
b ooh O Din ov
LM T o p (1
Dtoof of Dt hl}

Rubstitutions into equation (13) from equations (2) and (7) vield
the following “‘propagation equation’ for the stagnation en-
thalpy; thus: :

D1 b
Dt a* DI

=V 4 YH-V Inp (14)

R “r e sl o e e e

Differential Equation for Spherically Symmetrical S mall
Disturbance '

Lt us now suppose that the low through the nozzie deviates
only very slightly Gmd in o spherieally symmetrieal manner)
from a stemdy, coteal inflow.  Moreover, in what follows let us
denote as primed guantities all fluetnations from steady-state
valuew, reserving the unprimed statug for the quantities referring
to the “hase’ conieal flow. To lirst order in small rpuantinies,
eopundion (1) heeomes

Dot D

- (13
Dat D )

= QT 4G Y np
beenuse, in the steady-state conienl flow, the stagnation eothudpy
is everywhere umiforny, Tlis last equation may be further simpli-
fied by noting that ' '

I (pre?) == const o (_lfi)

Then, for spherically sy maetrie flow

Nomenclature :
"a = ratio of loeal veloeity to aconstie velocity far upstream . o
) : & = modified radial variable, “"’“@"'“;‘ d¢ '
8 = rmtio of acoustie veloeity {ar upstream to local acoustie JI1=M
velocity, aufa 7 = dimensionless perturbed pressure, p'/p
o . . 7 = also, 3.11159
o = loeal tHuld isentropic expansion exponent, (@ In p/0 In p)s . .
e ! ! ! , »/ 2 p = fluid density
¥* = dimenstonless Hujd eoetfivient, r = dimensiondess taae, a0 /0
vF = L= (90 Inp) tn{oproph, ¥ = phase angle .
@ == angntlar veloeily of oseillation

“r
H

viR

» = ausilinn funetion

= ratio of local radis to thal where M o= | in conicad flow, -

Q = solid angle subtended by cone

Note: Primes denote perturbed varinbles,

Subseript zeso refers (o conditions far upstream,
.
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L3 2 L2 I ’, 2z e PR N P
VEH' + vH T inp a0 o ) e ” f
o 1 oi
i e - - iy
e N , (17)

The partial differer it equation for the fuetuation of the stagnn-
ot enthalpy iso therdfore,

any D 3 1 oH )
s (18)
1 ta? 1)1 ar o O
where |
]) 0 * o (1)
m>a '

It is econvenient 10 render equation (19) dinvensiouless by in-
troducing the follow ing new varinbles:
/N ol ,
oo . T , oo/l (20)

H.“" ’ /l‘

whe re 28 the seoustie veloeity for the Huid in the reservoir ond 2
is the rudis owesured from the apex of the cone) where n Mach
numnber of unity would be obtained if the conieal llow aetunlly
persisted up to that radius. In terms o1 these variables) equation

(18Ybeeames
It fan\® D r o fag\ oW
o) =)L) (21)
Dr\u/ Dr and v /o

Further progress iz aided by performing a frequeney analysis in
time.  Therefore we assume that W can be represented in the
form: : ‘ '

= FE)e (22)

Upon insertion of this form for 3¢ in equiation (18), we oblain the
following ordinary (hﬂ(’l‘(‘ﬂ“ U equation for #;

FY o 1_ \ . “._,. i ‘tllMll’ﬂ
RN VI V L AR R VL

[' (w3 M dn ‘0"3:]
RS - L IV
T M T M i

where

M el a o g wait (2hn

WHKB Solution for

We now, proceed 1o obtain solutions to equation (23), Several
transformations of variable are noces:ary to put this cquation in

*more tractable form.  First, lot

v N e b oM L "
o= (\1'_ M’*‘) exp }m .’ LM .1_(‘ V) (25

Then
TR F T -0 . (26)

where '

LIS LAY GRS | s
T ™ (1 = M‘3>} (20)

£ = "' B (48)

-~ Next, lot

with ,

o that,

'

r» (;;) " o\p Jliuv ‘fMIIE} 7nE) {0y

The corvesponding differentinl equation for g is

" At - a(Eyin(E) = 0 (31)

P of? STANS .‘d /’11 I
e dé"]"(./f) P ()f o

Fauation C3h is in o form to which the well-knowrn WKB
method 3] ean he applied. “The solations so derived are, in this
ease, nsymplotically exact in the limits of small Maeh nuwmber,
M, or of higho win e mnnbier, e, b fact, ns shown in the \ppvudl\,
Lhe error of $he W KB imethod a8 used here is OOMS ). The ap.
proximate solution of equeation (31) which has o form at. ¢ = o
corresponding to an ontwardly radinting wave is

where

,’) o ' u'f,

With the same order of accuraey we have
‘ »
LI <g) e '{'fu'("r ~ &) e .{ Md¢ - “l r(EWt }‘
' 3
Amplltude and Phase Relations Between Flnw and -
Pressure’ Distuihauces

Ifrom ((lll.lh()llH (7)) awd () we nht'un for the disturbed pres-

stire and veloeity the follow ing expressiong:
on’ on’

ol or (#5)

Lap'  oll' oM
w g e NG
n ool of or ¢

Morcover the ise nlmpu relidion be w.m " pnwm\ wned dersity
gives .

P utp’ o {47)

Therefore, the perturbed mass flux iy

»

peY -oope’ dep” e it A - p’ f."ﬂy)

Car

Apr)

oo Tt ar ot
oft’ pr jol{' 1
ES R ¢ Rttt — e [ 3“
Ly at | ot oy ( )
In dimensionless form, equation (36) becomen K
1 0 A M o
SR s ST LN e (40)
Yt or  or 1 - M2 ot \ ‘
where ‘
' olnyp ' ‘
trot vy El I 41) -
w » v Ye (0 In p), 5 ( )
3

b fl(t)llf . (3:;)‘
If -
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tedious algebraie manipulation:

Correspondiugly, equation £30) heeoines

(u)'r" ( 1)6’»
tratr : [T U n s
. T T ( .1_ ) 4 (1)

Lpy " st - S -
g - - N ¢ ) ACEER W
IV S SC 'y
3 ar or Bl o
. R . R \ t/, '
Taking the ratio of eqnanion 10 and 123, we ohiain B S0 )
- ¢ (50)
. M i * :
' J i M olud .
M ar M J‘ Ag o result
e Jin 3 Inae [@E))]
AT S MS* .
or bH woas o . (51)
Itie . ‘
“The WEKB form of ¢, given by equation (31, s well adapted to where
evaluating this last expression,  After some stimplifieation, the A\
following forni is found; thus . wl!
gr - Q wr 1A2%
or ' _ ' - » r
© o v.M i ) . }
N e it v LR T B . o SRR
(P - M? I ln tex z/i) - ir When expressions { 18), {4d) and (A1) are used in equation (44,
";;:’-M dt T e the followiog tinal formula for the nozrle performance is obtained:
Sor \
or ‘ . o ‘
or 'Y,M’ i ':Sj__,.__,,, ] A
e - M .- A(M (53)
\ Q (pr) I - v M‘ + M ’5* - '"*(’:‘?] T
e 2 1 5
or ' X

Since, for complex periodic time variation of @ and (pe)’, their  Here A(M) is an abhreviation for

absolute ratio and their phase are the same as those of their time .

.ry"‘ -3

derivatives, the right-liand side of equation (41) in polar form |(M) S

provides the desired answer. We huve yet, however, to express 2

the answer in terms of readily interpreted physical quantities,

I : Discussion of Resulis S
Fbrmu!atiu‘n in Terms of Stronhal and Mach Numbers Although entirely securate only in the limits of low M.u'h

ntituber and high Strouho} niomber, equation (53) does, never-

The 1 ing 1 "pos § U1 Vs ished after considerable . . . ‘o .
The following two results can be established after considerable theless, yield the correet quasi-statie relations s S* = 03 i,

on ' . i
dn (a/B) I K : . L
P :,‘E—)“- I [ v y M? (45) or -, ‘.,M_.,.. ‘ } ©(55)
iWé g1 K (pr)’ |~ M!? .
0 .
M oy? = 3 * 1Y {4 - ) : pr L .
&Y [ LAt 2 M| (i) . : -
Watt 2 v 2 . or ’ ‘ . ‘
We observe, among other things, that the upstream infivenes of
where ‘ pressure fluetudions vanishes as the throat Mach number ap-
ronches unify.
0 ap pronehe: A \
A B 0.1 ) In ()’) (47) Now if we assume thaf A
np up/sy . : : o '
! e .
. ’ . . . Pos piet (56)
These results are valid for the arbitiaey smgle-phase fluid, exeept, » ‘ .
that in obtaining equation (13 the derivative of y* at constant . IR
‘ntropy lmf \)(-vn.nvulo('l(\d. l’.nr the monatomiv gag, /() reduecs ‘ (po)’ (it ' ’ (57)
1o an especially simple expression. p & ) oot
We now proceed to eliminate {8 in the foregoing expressions T
in favor of the Strovhal number. ‘This eliminatiot is aceomplished sen .
as follows,  The Rtrouhal number at a given point in the flow is P veM? N -
conventionally defined as wid/%e. To account for the eurvature of Q= M e (58)

the How aten, we here modifv this de finition slightly, tuking § =

a ol T 0 e relate e to e, we note that In Figs. 2 and 3, approximate values of the amplitude factor A

and of the phase angle ¥, ax found from equation (53), sre shown

, it for various Mueh nunibers in the ease of a perfect gas with a
AT S (48)
g spesifie heat ratio of 101, :
, , Irom equition (53) it can be seen that the phase :m;.,lo for M
Then, with @ denoting e solid angle of the cone, we obtain S0 starty ol st 180 degg for §% = 0 and approaches 90 deg for
easily vnough S* = w., At the smne time the amplitude fuetor for M = 0 jn-

4 | Transactions of the ASME
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. freases s(baiiil\' from unity to infinity.

. Iy than 0.1, deviations in phase
behavior are small, and, for Stroub:sl numbers Tess than 1.0, de-

FRASE ANGLE BETWEEN FLOW AND Pwus«,ne FLUCTUATIONS, ¢ (deg)
Fig. 2 Modified Strovhal numbor versus phase angle

It is permissible to think
= 0 condition as that for an incompressible fluid, for

of the M

“which every portion of the fluid within the nozzle must oscillate

in phase. The foregoing phase and amplitude relations reflect,
then, the inereasing difficulty for high-frequency pressure oseilla-

Alons to overcome the inertin of all the flaid in this synehronous

column within the nozzle.
When (lw Mach numhor at the nozgle is finite, equation (53)
shows th.n :

Nel o 1

S~ 1) (549)

, ‘ !
N et L s

i (60)

CAgain, woe obtain quasi-static behavior at low Stroubal nundbers.

The result for $* ~= @ can be expressed in complete form ns

. O(PY )'
ar .

o
A speeial case of this last formula is obtained whea M is small,
Ty this case, the pressure fluetnation and mass-lux fluctuation are
mutually related in the same manner ad they are when o plane
wsll vibrates adjacout to a semi-infinite medium having a finite
sound velocity. The similarity comes ubout heeause, at high fre-
tueney, the waves within the nozzle are so erowded together that,

the effects of rurvature of the phase fronts are negligible, '

“The trends just disenssed are well illustrated by the curves in
Figs. 2and 3. Inaddition, we ohserve that, for Stroubal numbers
ad anaplitude from quasi-static

viations between incompressible (84 =
(M > 0} behavior are small.

0) and compressible

Journal of Applied Mechanics

Tika

(61)

C231,

DO pememrre sy e i e

phes -
t
. RN RXT BRI
H |
[t A i B
- | \
J O S
i i
T ';--‘»wa-oo :«w{-
NS O TR SR -
T
i {
4
\ \
A )
J5. W SRR - N
A}
- |y ..
3 RS

i=)
'
i
i
1
§
'
'

MODIFIED STROUHAL NUMAER

O} comn o an e R

- b - EURPRPRTER DRRUVOUE ST U Y R — |

O OO O OO OO 0 OO A O TS O O OO B AT

o 0.2 0.8 Q.6 on 10 12 e 16 Le 2.0
AMPLITUDE FACIOR, N ‘

Fig. 3 Modifled Strovhal number versus amplitude factor . -

One of the couclusions of the present analysis is that the angle

of nozzle divergenee is of some unpurtan('c., However, for noz7les

of reasonable design, the range of total included angle is EOMe-

what limited, a total included angle of 60 deg being roprcsentu—

tive. For this particular angle, tlw wodified and usual Sfrouhal
numbers are identical, ‘ , ) o
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APPENDIX

"The purpose of this Appendix is (o aseerlain the order of mag-

Dover Publimtioﬁs,

"nitwde of the ervar ineurred through use of the WIB method in,
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B

".the’ solution of equati

‘Section 3.3 of refercnen

on (31).

141.

The t rf‘n.tnwm, employed will
follow complotdv for our specifie case, the mnlvsw given in

We have the differontial cquation
| W e = D) = 0 (62)

4

T,

)vhvré i
. M: [Sy'* -3
AT R —"—
” EC Ger L2
and
I\ow let

1¢3) .

SRR G Al

=ik )

Wy

R M*] (63)

(64)

(65)

The rmlxlt,iﬁg differential equation for # is, then

2(E) — 2w (§) — H(E) ==

(66)

A solution of the foregoing diflerential equation is provided by
that 2(£) which satisfics the following integral equation:

zn+1($) = f
] Je

© {l — (,4-—1’:1(1 -()a

l‘ll(£)| e

- where 2 &Y is defined to be unity, and

q[

o
! (uvf )"

Ty | . h‘ } ) ‘{l - --.m(!-—-!)!
o KB =1 ’f T o L(ha(nt=2de - (67)
’ ‘ ¢ 2
. /(i) ~&u(E); ill < (68)
. :(‘Eﬁ in 'equnlinn (h.) an he n\}mwsodh\ 1“(\"‘[”"“\ Rorien: '
‘ B C2IE N E 2 (69)
' =

Lz Ot3dt (70)

- As a consequence of equation (67), it enn be proven that

(71)

and it can be reen that the series (69) conver LJ“? for all finite

tandu,

.

Ag acspeeiad ense of (7()). we have

Now r(£) is zero at infinity, and we shall presume that it inereases
monotonieally with deereasing £ Then, through integration by
parts, we ean show that - " :

'

B o
o f et =8 7'(!)(1!} S (73)
LU 2w o L

As E approwches infinity, it iv evident that

Then

2(£)

z(‘{‘;) o ‘,Zu'

Niheo

|
M’\I?}N*“z:

s (MY

C ot 3\ . /s ' _
=1 l KO+ 0 <M;) Fo <M> @
2ip J o ' w?, ) ue -

~ Reference now o equntion (34) of the (wt \\l” show tlud, the
WK .l])pru\unnl ion for z(E) in . ‘ 5

ff r{tdt

I

«

| I 1 ' ’ '

e~ N2 o7

£ r T M‘ (74}
D o= 0(M?) . (75)

it i\ ) [t k 2 o
= o - w(Odr - { - * r(dty 4 ... (77)
2w J . Qw ] o : Lt

Ir(l)rll in (M),

we tind by intercomparison of series (76) and (77) that the frac-
tionul error of the WKB method as (*mplovod in this work is

O(M3/1?).

Printed in U, 8, A.

Transactions of the ASME

B q .f e o ’ . i( '
B(E) == ;] 10l 4 . f e~ B ydt (72)
‘ e ) 2w p )
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