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TECHNICAL MEMORANDUM

LUNAR IMPACT FLASH LOCATIONS
FROM NASA’S LUNAR IMPACT MONITORING PROGRAM

1. INTRODUCTION

Meteoroids are small, natural bodies traveling through space, fragments from comets,
asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows,
ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no
atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid’s
kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of
a debris plume. A flash of light associated with the plume is detectable by instruments on Earth.

Following the initial observation of a probable Taurid impact flash on the Moon in Novem-
ber 2005,! the NASA Meteoroid Environment Office (MEO) began a routine monitoring program
to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of
over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid envi-
ronment for application to spacecraft engineering and operations. The Lunar Impact Monitoring
Program provides information about the meteoroid flux in near-Earth space in a size range—tens
of grams to a few kilograms—difficult to measure with statistical significance by other means.

A bright impact flash detected by the program in March 2013 brought into focus the impor-
tance of determining the impact flash location. Prior to this time, the location was estimated to
the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better
accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact
locations. But such a bright event was thought to have produced a fresh crater detectable from
lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking
the observation of an impact flash with its crater was an appealing one, as it would validate NASA
photometric calculations and crater scaling laws developed from hypervelocity gun testing.

This idea was dependent upon LRO finding a fresh impact crater associated with one of the
impact flashes recorded by Earth-based instruments, either the bright event of March 2013 or any
other in the database of impact observations. To find the crater, LRO needed an accurate area to
search. This Technical Memorandum (TM) describes the geolocation technique developed to accu-
rately determine the impact flash location, and by association, the location of the crater, thought
to lie directly beneath the brightest portion of the flash. The workflow and software tools used to
geolocate the impact flashes are described in detail, along with sources of error and uncertainty
and a case study applying the workflow to the bright impact flash in March 2013. Following the
successful geolocation of the March 2013 flash, the technique was applied to all impact flashes
detected by the MEO between November 7, 2005, and January 3, 2014.



2. OBSERVATIONS

To observe the flashes produced by meteoroids striking the lunar surface, the unilluminated
(earthshine) portion of the Moon was simultaneously observed with two or more telescopes outfit-
ted with video cameras. A description of the instrumentation and methodology follows. For more
details, see reference 2.

2.1 Instrumentation

The NASA Lunar Impact Monitoring Program has been primarily conducted using two
telescopes at the Automated Lunar and Meteor Observatory (ALaMO) located at NASA Marshall
Space Flight Center in Huntsville, Alabama (34.66° N., 86.66° W., Minor Planet Center designation
H358). From 2006 to present, various combinations of the following telescopes have been employed
for lunar impact observations: 0.25-m Orion® Newtonian, 0.35-m Meade® modified Schmidt-
Cassegrain, 0.35-m Celestron® Schmidt-Cassegrain, and a 0.5-m RC Optical Systems (RCOS)
Ritchey-Chrétien (fig. 1), all outfitted with focal reducers to give approximately the same field of
view (FOV). The 20-arcmin FOV provided by each telescope covers approximately 4x 10 km?2, or
about 10% of the lunar surface on either the leading or trailing edge of the Moon.

Figure 1. The 0.5-m RCOS Ritchey-Chrétien telescope used for lunar impact
monitoring at the ALaMO. This telescope worked in conjunction
with another located at the ALaMO and one at WCO.



For a short time, observations were also conducted at the Walker County Observatory
(WCO) near Chickamauga, Georgia (34.85° N., 85.31° W.) and at New Mexico Skies (NMS) near
Mayhill, New Mexico (32.90° N., 105.53° W.). Both sites were run remotely from the ALaMO.
WCO operated from September 2007 until July 2011. The observatory at NMS was operated from
October 2011 to October 2012, and November 2013 to April 2014. The observations in 2013 and
2014 took place during the science mission of LADEE (Lunar Atmosphere and Dust Environment
Explorer). WCO utilized a 0.35-m Meade modified Schmidt-Cassegrain telescope, while NMS
employed a 0.35-m Celestron Schmidt-Cassegrain.

Each telescope was equipped with an AstroVid StellaCamEX or Watec 902-H2 Ultimate
monochrome charged coupled device (CCD) video camera. These cameras incorporate a 0.5-in
format Sony EXview HAD CCD™ chip, sensitive to the 400- to 800-nm wavelength range. The
interleaved, 30-fps video was digitized and recorded straight to hard drive for later flash searches
and photometry calculations. A Kiwi-OSD or IOTA-VTI was used for accurate GPS time keeping.

2.2 Methodology

Observations of the unilluminated portion of the Moon were typically conducted when
sunlight illuminated between 10% and 50% of the Earth-facing surface. This yielded a maximum of
10 observing nights per month, with five evening observing sessions between New Moon and First
Quarter lunar phases, and five morning sessions between Last Quarter and New Moon. This sched-
ule minimizes scattered light from the sunlit lunar disc that would mask faint flashes at illumina-
tions greater than 50%, and maximizes the amount of time on target, a problem at illuminations of
10% and less. Figure 2 shows the lunar coverage area scanned for lunar impacts since the inception
of the Lunar Impact Monitoring Program. A near 50% illuminated lunar disc is shown for illustra-
tive purposes. No observations are made near the poles or along the line of 0° longitude.

(a)

Figure 2. Observed coverage area by the NASA Lunar Impact Monitoring Program from 2006
to present on (a) the leading edge (evening observing sessions) and (b) the trailing edge
(morning observing sessions) of the Moon. Note that observations are only conducted
on the earthshine portion of the lunar disc, which changes depending on the lunar phase.



Impact flash detection was performed using the software LunarScan.? The software scans
a night of video from each telescope and identifies pixels that exceed the standard deviation of the
background by a selected amount. Candidate impact flashes are cross-correlated using multiple
telescopes in order to eliminate false detections caused by cosmic rays or satellite glints. Figure 3
shows two different impact flashes captured by two telescopes and illustrates the camera FOV.
Standard aperture photometry was applied to the impact flashes and the field and reference stars
used for calibration, as described in detail in reference 2.

(a)

(b)

Figure 3. Impact flash examples: (a) The camera FOV during an evening observing
session and an impact flash detected by two telescopes on April 8, 2011, at
01:32:17.808 UT and (b) the FOV during a morning observing session and
a flash detected on November 10, 2012, at 09:55:10.243 UT by two telescopes.
Impact flashes are boxed in white.



3. GEOLOCATING IMPACT FLASHES

The term ‘geolocation’ refers to the process of identifying the real-world spatial location
of an object. ‘Georeferencing’ is the method used to associate an image with a map of real-world
locations, and therefore geolocate an object. Applied to Moon imagery and lunar maps, these terms
perhaps should be called ‘selenolocation’ and ‘selenoreferencing,” but ‘geolocation’ and ‘georefer-
encing’ will be used, as this terminology is known to the Geographic Information System (GIS)
community.

In broad strokes, the geolocation technique employed here takes video frames from the
recordings of impact events and fits them to a map of the Moon using lunar features seen in earth-
shine. This allows the location of the impact flash, and therefore its associated crater, to be deter-
mined on the lunar surface.

The workflow used for the geolocation of impact flashes combines commercially available
software and custom programs. An overview of the workflow and software tools used for this tech-
nique is seen in figure 4 and described in the following sections.

e A s A e A
1. Create Video Segment 2. Determine Flash Centroid 3. Define and Set Up Basemap
o |dentify the video frame(s) containing o Import the flash video frame into e Load the lunar basemap into ArcMap.
the impact flash. MaxIm DL Pro. ° Ad]USt the basemap d|sp|ay to
e Use VirtualDub to create a short o Calculate the flash centroid location account for lunar libration using the
video segment containing the impact in image coordinates. subobserver latitude and longitude
flash. o Export the video frame as a TIFF calculated by JPL Horizons.
image.
\. J J \_ J
e - - A e A s A
6. Determine Flash Location 5. Transform Flash Coordinates 4, Georeference Flash Images
 Input the flash location in map o |nput the world file into custom e Load the flash TIFF into ArcMap.
coordinates to ArcMap. software. e Georeference the flash image using
o Read the selenographic latitude and o |nput the flash centroid location in control points.
longitude transformed by ArcMap. image coordinates. e Output a world file with polynomial
® Place a marker on flash, add the o Qutput the flash location in map transformation parameters.
location to the database and shapefile. coordinates. e Record the rms error.
\. J \_ J \_ J

Figure 4. Workflow for geolocating impact flashes on the Moon.



3.1 Create Video Segment

The freely available program, VirtualDub (<www.virtualdub.org>), was used to create short
video segments of each of the impact flashes in audio video interleaved (AVI) format. This reduced
the amount of computer storage space needed to analyze all of the flashes and also made the data-
set easier to manage for the analyst. The video segments were stepped through frame-by-frame.

A video frame containing the impact flash was saved for analysis.

3.2 Determine Flash Centroid

The video frame containing the impact flash was selected for inspection in MaxIm DL Pro,
commercially available software (<www.cyanogen.com>). It was assumed that the crater associated
with the impact lies directly beneath the brightest part of the flash. The flash centroid was calcu-
lated in MaxIm by weighting each pixel along the x- and y-axes by the amount of light produced
by the impact:

in(Pi_S)

X="w———

X(r-5)
and

_Su(r-s

where P; is the brightness of the pixel at (x;, y;) and S is the mean background sky brightness.# See
figure 5. The flash centroid at ()?f, yf) in image coordinates was recorded to a fraction of a pixel.
Once the centroid coordinates were obtained, the video frame containing the flash was saved as

a tagged image file format (TIFF), a raster graphics format. Raster datasets are essentially arrays
of numbers with array indices determining the coordinates. This file format is ideal for georeferenc-
ing and is a format accepted by GIS mapping software, ArcMap.



(a) (b)

Figure 5. Determining the flash centroid using MaxIm DL Pro: (a) The intensity-
weighted centroid is determined using all of the light in the inner circle.
The outer annulus is used by MaxIm to determine the background sky
brightness. (b) The centroid is marked with a red ‘+’.

3.3 Define and Set Up Basemap

Georeferencing was performed with the commercially available program ArcMap, part of
the ArcGIS software suite (<www.arcgis.com>). To begin the process, a reference basemap and
coordinate system were set up. A basemap is a map layer that serves as the foundation for mapping
and visualizing geographic information. In this case, selenographic information was needed for
locating lunar impacts. A recent, LRO-created orthographic projection of the lunar surface with
a resolution of 32 pixels per degree and center at 0° N., 0° E. was downloaded and installed as the
basemap (<http://wms.lroc.asu.edu/lroc/view rdr/WAC GLOBAL>). It was assigned the standard
lunar latitude and longitude coordinate system.

The Moon exhibits a slight north-south nodding and east-west wobbling known as lunar
libration. Librations in latitude (north-south) are caused by the tilt of the Moon’s orbital plane
with respect to the ecliptic. Librations in longitude (east-west) are caused by variations in orbital
velocity due to the Moon’s elliptical orbit. To account for lunar libration, adjusted map center
coordinates for displaying the basemap were calculated using the apparent subobserver latitude
and longitude output from JPL Horizons (<http://ssd.jpl.nasa.gov/horizons.cgi>) and input into
the basemap projection controls for each impact flash. Figure 6 shows the LRO basemap with two
different map centers.




(@) Rl dE

(b)

Figure 6. The LRO basemap centered at (a) 0° N., 0° E. and (b) 7.269° N., 0.275° E.
To account for lunar libration, the map center must be adjusted for each
impact flash before the flash imagery can be georeferenced.

3.4 Georeference Flash Images

ArcMap was utilized to georeference the flash imagery, mapping the flash images to real-
world spatial locations. Generally, the steps for georeferencing an image are as follows: (1) Add the
raster data that needs to be aligned to the basemap, (2) link known raster positions in the image
(x, y) to known positions in map coordinates (x’, y) using ‘control points,” (3) save the transforma-
tion used to align the images (‘register’ the alignment), and (4) record the fit error estimate for use
in the uncertainty determination.

Following the steps outlined above, the video frame TIFF image containing the flash was
imported into ArcMap and overlaid on the LRO basemap after the map display had been adjusted
for lunar libration. The image’s brightness and contrast were adjusted to emphasize the Moon’s
prominent features. ArcMap’s ‘Georeferencing toolbar’ was used to assign control points to promi-
nent features one at a time in both the basemap (where coordinates were known) and the flash
image (where coordinates were unknown). Noticeable features like small, high-albedo craters (e.g.,
Byrgius A, Mersenius C, Dionysius, and Alfraganus), transitions between mare and highland
(e.g., between Oceanus Procellarum and Grimaldi), or where a ray crosses into mare/highland (e.g.,
Tycho and Mare Nubium) were typically chosen as control points. Note that because the lunar ter-
rain is illuminated by earthshine, there are no shadows to make craters or mountains distinct. Only
albedo features are visible. The flash image was automatically resized and repositioned by ArcMap
to match the basemap after each control point was added; control points were chosen until the
flash image was aligned with the basemap. Figure 7 illustrates this process. Evenly distributing
a number of control points across the image was necessary for obtaining good image alignment.



(e) ()

Figure 7. Georeferencing lunar impact flash imagery. (a) The video frame containing the flash
is overlaid on the LRO basemap with libration adjustment. (b) One control point
(‘+’) 1s added, linking unknown (red) feature coordinates in the image to known
coordinates (green) on the basemap. The first control point translates the image so
that control point No. 1 on the flash image and basemap are aligned. (c) A second
control point is added. This rotates and stretches the flash imagery to better align it
with the basemap. (d) Control point No. 3 is added, further stretching the image to
align it to the basemap. (e) Twenty control points have been added to georeference
the flash image. (f) The final georeferenced lunar impact flash image.



ArcMap uses the control points and a least-squares fitting algorithm to create a first-order
polynomial transformation,

xX'=Ax+By+C
and
V' =Dx+Ey+F , (2)

that transforms the flash image coordinates (x, y) in pixels to the basemap coordinates (x’, y') in
meters, shifting the displayed flash image to the spatially correct location on the basemap in the
process. Map coordinates (x’, y") are an orthographic projection of the three-dimensional Moon
onto a two-dimensional plane. Parameters 4, B, C, D, E, and F are determined by the control
points; they scale, shear/skew, rotate, and translate all coordinates in the image to map coordinates.
The parameters are determined by

A=m cost

B= my(k COs t—sin ¢)

C=translation in x direction

D=m,_sint

E= my(k sin ¢+ cos 1)

F=translation in y direction, (3)

where m, is the change of scale in the x direction, m, is the change of scale in the y direction,
k=tan(s) is the shear factor along the x-axis, s is the skew angle measured from the y-axis, and ¢ is
the rotation angle measured counterclockwise from the x-axis (<http://help.arcgis.com/en/arcgis-
desktop/10.0/help/>). The parameters used to define the transformation were saved in a ‘world file’
(.tfwx file extension) when the image was registered, so named because it describes the image-to-
world (or image-to-map) transformation.

Applying the transformation to each control point in turn yields a residual error € that is the
difference between the actual control point location in basemap coordinates and the transformed
location. The rms error is calculated using

n 2
2'—181'
rms error = 4| —=— | 4)
n

where 7 is the number of control points. The rms error is a measure of how consistent the transfor-
mation is between different control points. It was recorded for each impact flash. An emphasis was
placed on choosing multiple control points of good quality and minimizing the rms error, though
low rms error does not necessarily indicate that the impact flash image was accurately georefer-
enced. Application of these errors to the uncertainty in the flash location is discussed in section 4.4.
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3.5 Transform Flash Coordinates

ArcMap calculates a first-order polynomial transformation to transform image coordinates
(x, y) to orthographically projected basemap coordinates (x’, y’). The same transformation can be
usgd to transform the impact flash centroid in image coordinates, ()?f, ff) to map coordinates ()?f',
)7f ). As per equation (2):

and

Custom Python code read in the world file containing the transformation parameters and
the impact flash centroid in pixels, and performed the transformation. The output was the flash
location in the coordinates of the basemap in meters.

3.6 Determine Flash Location

The selenographic longitude and latitude (A, @) of the impact flash are determined by enter-
ing the mapped flash coordinates, ()?f , )_’f ) in ArcMap using the ‘Go to XY’ dialog. A marker
placed at this location to denote the position of the flash, as in figure 8, was used to display base-

map coordinates and (A, ¢). A quick spot check compared the location of the marker and the flash.
If georeferencing was successfully executed, the marker laid directly on top of the flash.

(@) o (b)

Figure 8. The impact flash is geolocated: (a) A green marker is placed on the impact
flash location after transforming the impact flash centroid in image coordinates
to map coordinates and (b) zooming in on the impact flash, the green marker
lies directly on top of the flash centroid.
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The successfully georeferenced point was added to an ArcMap shapefile, a vector data stor-
age format that stores attributes of geographic features. A database of attributes was compiled for
the impact flash dataset. It can be exported to multiple different relational database management
systems.
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4. SOURCES OF ERROR AND UNCERTAINTY

The strategy outlined in section 3 is capable of producing high-accuracy location estimates
for impact craters, though there are several potential sources of error. Issues that contribute to the
uncertainty in the crater position are discussed in the following sections.

4.1 Image Quality

Poor image quality makes georeferencing flash imagery difficult and sometimes unfeasible.
The lunar phase, lunar altitude, cloud cover, and glare from the sunlit portion of the Moon affect
the amount of earthshine visible in the flash imagery. This can make the identification of lunar
surface features problematic and thus affect the assignment of control points, and by extension, the
whole geolocation process. Two examples of poor images are shown in figure 9. In images with few
visible surface features, control points were preferentially chosen in the vicinity of the flash.

(a) (b)

Figure 9. Impact flashes with poor image quality: (a) Glare from the sunlit portion of the Moon
on December 13, 2010, and (b) low lunar altitude on August 26, 2009, make these two
impact flashes, boxed in white, difficult to georeference because not many features on
the lunar surface are recognizable.

Image resolution also has an effect on the assignment of control points. Impact flash image
resolution is much poorer than that of the basemap. Choosing the point where mare transitions to
highland, for example, can be done with more accuracy on the basemap than in the flash imagery.
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4.2 Astronomical Seeing

The atmosphere is not a transparent, homogenous layer. Turbulent air conditions cause
variations in the refractive index of the atmosphere. This produces image blurring and instability in
telescopic observations. The phenomenon, referred to as atmospheric seeing, can cause the impact
flash location to shift relative to the control points. This adds uncertainty to the flash location.

4.3 Flash Duration and Brightness

The characteristics of the impact flash influence the determination of the flash centroid.
Short flashes and extremely bright flashes may have more uncertainty associated with their posi-
tion. An interlaced video frame (1/30 s) combines two fields (1/60 s exposure each) captured at
different moments in time. An impact flash may exhibit interlacing effects when only one field
captures the flash in a single frame. In this case, the light from the flash is seen only on every other
line of the video. An example of this artifact, referred to as ‘combing’ or ‘venetian blinding,” is seen
in figure 10. For short flashes (1/60 s in duration) only one frame is available for analysis, and the
centroid results are less reliable.

Figure 10. An example of ‘combing’ in an impact flash.
Light appears on every other line of the video.

Bright flashes can exceed the dynamic range of the detector. This not only causes problems
with determining the magnitude of the flash, but also affects the determination of the flash cen-
troid. The characteristic ‘flat top” of a saturated flash point spread function (PSF) is shown in fig-
ure 11 next to an unsaturated PSF. Saturated flashes do not accurately represent the true brightness
of the flash and, as a result, the centroid calculation cannot properly weight the true pixel intensi-
ties. Where possible, saturated images were not used; a later, fainter frame was analyzed instead.
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Figure 11. An example of a saturated impact flash compared to an unsaturated detection observed
on March 12, 2008. Panels (a) and (c) show the impact flash saturated at 00:40:42.442 UT
and unsaturated two frames (1/15 s) later, respectively. Panels (b) and (d) show corre-
sponding graphs of the flash intensity on the z-axis (pixel values) versus image coordinates
in the x-y plane (pixels). The flat top of the PSF (b) is indicative of a saturated signal.

The spiked PSF (d) looks like a typical unsaturated flash.

4.4 Human Analyst

By far, the largest source of error in lunar impact flash geolocation may be attributed to the
human analyst. The control points must be identified by eye, and a cursor has to be placed on them
by hand. The quality of the control points selected during the georeferencing process varies from
person-to-person. Two people were responsible for geolocating the impact flashes presented in this
TM. To quantify the difference between the two analysts, five impact flashes analyzed by both people
were compared. The result with the worst standard deviation was chosen to represent the conser-
vative location error bars. Table 1 shows the different results for the impact on October 9, 2012, at
06:46:16.550 UT in selenographlc longltude and latitude coordinates (A, @) and orthographically
prOJected map coordinates (X, , y ) The standard deviation in projected map coordinates in the x’
and )’ directions was about 5,997.950 m and 1,699.572 m, respectively. The root sum of the squares
of the standard deviation in x” and y” is 6,234.096 m, which is the value used as the human error
contribution.
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Table 1. Impact flash geolocation results from two analysts for the flash
detected on October 9, 2012, at 06:46:16.550 UT. Negative latitude
coordinates indicate southern latitudes.

Analyst A (deg) ¢ (deg) X/ (m) ¥f (m)
1 50.0890 -12.3457 1,395,696.818030060 -473,475.52735959200
2 50.6385 -12.4784 1,404,179.200895170 -475,879.0852216600
stdev - - 5,997.950444540 1,699.572063243

In addition to this estimate of human error determined by comparing two different analysts,
ArcMap displays an rms error describing the fit of the control points as discussed in section 3.4.
This is an estimate of how well the system of control points represents the transformation between
image and map coordinates. Although this error is certainly not independent of the human error,
the two values were combined as a root sum of the squares to give the final uncertainty in the lati-
tude and longitude. The resulting error thus includes both the variations between different analysts
(and thus the expected level of human error) and the quality of the fit to the control points for the
measurements of each flash. A Python program utilizing the Basemap package (<http://matplotlib.
org/basemap/>) was used to perform the coordinate transformations between an orthographic pro-
jection of the Moon as seen from the ALaMO (x’-)” plane) and the selenographic spherical coordi-
nates (A4, ¢). The subobserver selenographic latitude and longitude calculated using JPL Horizons
were used in the transformation to account for lunar libration, as described in section 3.3. After the
measured flash location (X,, y,) was converted to ()?f,, )7f') in the orthographically projected plane
of the map, the uncertainty was added and subtracted in x” and )’ from the refraction-corrected
flash location (see sec. 4.5), and extremes of longitude and latitude were calculated by projecting
those locations back onto the Moon.

Impact flashes that occur near the Moon’s limb have larger uncertainties in position com-
pared to flashes that are located closer to the center of the lunar disc. The transformation from
orthographic back to the spherical Moon stretches the error bars near the limb, as seen in fig-
ure 12. The measured flash location is marked with a yellow ‘+,” the refraction-corrected posi-
tion is marked with a white ‘+,” and the positional uncertainties are marked with red ‘+’s. Similar
stretching of latitude uncertainties would occur near the poles if the FOV covered the high-latitude
regions. While only one of the flashes was so close to the limb that the coordinate transformation
failed (MEO flash No. 16 on December 14, 2006, at 08:56:43.008 UT), several others were close
enough that the limbward longitude error bar was off the Moon so that the worst-case longitude
was indeterminate.

16



Latitude —18.226891°

Longitude -85.825768°

Figure 12. Example of the large uncertainty in longitudinal position for an impact flash
located near the limb. The original georeferenced flash location (yellow ‘+’) is
shown alongside the refraction-corrected flash location (white ‘+’; see sec. 4.5)
and extremes in latitude and longitude (red ‘+’°), denoting the uncertainty. The
graphic is centered at the latitude (vertical) and longitude (horizontal) location
indicated and gridded every 1°. This impact flash was detected on December 18,
2007, at 01:32:19.277 UT.

4.5 Differential Atmospheric Refraction

The low elevation and high air mass (large zenith distance) of some of the flash observa-
tions leads to an apparent shift between the location of the lunar features used as control points,
which are illuminated by blue-green earthshine and the deep red impact flash that is a blackbody
with a temperature of approximately 2,800 K.> The redder impact flash is shifted towards the
zenith less than the bluer earthshine. The magnitude of this shift depends on the atmospheric con-
ditions for the night, the zenith distance of the observed flash, and the effective wavelengths of the
earthshine and impact flash.
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The calculation of the refractive index of the atmosphere and differential refraction is taken
from reference 6. A standard pressure of 1,013.24 mbar corrected to the ALaMO’s altitude and
an average nighttime low temperature at the observatory for each month were used in the calcu-
lations. The effective wavelength for the impact flash was found by convolving a blackbody for
2,800 K with the spectral response for the Sony EXview HAD CCD chip used in the video cameras
which recorded the data:’

A — JlFﬂash(l)RCCD(l)d/l

e ash = » (6)
AR [ B () Reep (A)dA

where )Leff Flash 18 the effective wavelength for the flash/camera combination, Fy,y, is the blackbody
curve for the flash, and R is the spectral response of the video camera CCD.

A similar expression is used for the earthshine effective wavelength, but the spectrum of
the earthshine is more complicated as it consists of sunlight reflected from clouds, ocean, and land
masses and must also take into account the spectral reflectivity of the lunar surface. The earth-
reflected spectrum was taken from plots of clear sky and cloudy sky measurements acquired by the
Global Ozone Monitoring Experiment (GOME) mission.8 These were convolved with the lunar
surface reflectivity measured by reference 9:

o [ AFerin (M) ntoon (M) Reep (1) dA
IES J.FEarth (l)rMoon(ﬂ’)RCCD(l)di

: (7)

where ?Lef Es 1s the effective wavelength for the earthshine/camera combination, Ff,, is the flux
of radiation reflected from the Earth taken from the GOME spacecraft measurements, ., 1S the
spectral reflectance of the Moon, and the other parameters are as in equation (6). The convolution
of Fg,.n and ryp,0, Was compared with the earthshine measurements of reference 10, which cov-
ered a narrower wavelength range. This showed that a combination of the GOME measurements
for a clear sky and cloudy sky was necessary for the profiles to match (fig. 13, magenta and black
curves). Using a combination of 33% cloudy plus 67% clear gave the best fit of the Rayleigh scat-
tering dominated blue wavelengths while matching the redder wavelengths dominated by ocean,
land, clouds, and molecular absorption bands.
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Figure 13. Earthshine spectrum from reference 10 (black curve) and GOME Earth
reflectivity spectrum?® with 33% cloudy and 67% clear sky convolved with
lunar spectral reflectance from reference 9 (magneta curve). The red and
blue curves are the cloudy sky and clear sky earthshine, respectively, con-
volved with the lunar reflectivity. Green is the relative response of the CCD
and cyan is the flash blackbody curve. The vertical axis is arbitrary units.

The image shift due to differential refraction is greatest at large zenith distances (low eleva-
tion angles). Air temperature also affects the amount of refraction. Figure 14 shows these effects.
The effective wavelengths and resulting indices and constants of refraction are given in table 2 for
an air temperature of 0 °C and atmospheric pressure of 1,000 mbar. The constant of refraction R
in arcsec is given by

nz—l
R =206,265 =

where 7 is the index of refraction. The difference between the true and apparent zenith distances
(z, and z , respectively), is calculated using

z,—z,=Rtanz, . 9)
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Figure 14. Flash shift on the orthographically projected surface of the Moon
due to differential refraction as a function of zenith distance for
three average nighttime low air temperatures at the ALaMO and
average lunar distance.

Table 2. Effective wavelength, index of refraction, and constant of refraction
for a 2,800 K impact flash and three combinations of sunlight

Zenith Distance (deg)

reflected by Earth and then reflected by the Moon.

Effective Constant
Wavelength Index of Refraction
Source (A) of Refraction (arcsec)
Impact flash 7,093.3 1.000291005 59.9979
33% cloudy + 67% clear Earth and Moon 6,303.5 1.000291897 60.1818
100% cloudy Earth and Moon 6,438.5 1.000291720 60.1454
100% clear Earth and Moon 5,474.5 1.000293297 60.4703

Since refraction causes a shift toward the zenith, it was necessary to determine the direction
in which the correction should be applied to the lunar coordinates. This required calculating the
direction to the zenith on the orthographically projected Moon. JPL Horizons was used to deter-
mine the position angle of the lunar pole relative to celestial north, the right ascension and dec-
lination of the Moon, and the local sidereal time at the time of the flash. Spherical trigonometry
was used to find the angle between the zenith and celestial north at the position of the Moon, and
this angle was added to the position angle of the pole of the Moon to determine the angle to the
zenith in the orthographic x’-y” plane. The flash location measured using the geolocation workflow
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(in sec. 3) was then shifted toward the zenith by the appropriate distance in meters corresponding
to the shift in arcsec (eq. (9)) at the distance to the Moon calculated by JPL Horizons. This shifted
position was then converted to longitude and latitude using the Python Basemap package.

Examples of the differential refraction correction applied to two impact flashes can be seen
in figure 15. The location of the flash on the Moon can be determined by the latitude (vertical) and
longitude (horizontal) axis labels. The yellow ‘+’ is the original flash location as determined by the
geolocation workflow. The white ‘+’ is the location corrected for differential refraction. Red ‘+’s
show the latitude and longitude extremes determined from the georeferencing rms errors and the
human analyst error described in section 4.4.

Latitude 28.549974°
Latitude 23.497460°

(a) Longitude —33.584865° (b) Longitude —14.951373°

Figure 15. Examples of the differential refraction correction applied to the location of
an impact flash. The original georeferenced flash location (yellow ‘+°) is shown
alongside the refraction-corrected flash location (white ‘+’) and extremes in
latitude and longitude (red ‘+’) determined from the uncertainties. The graphic
is centered at the latitude (vertical) and longitude (horizontal) location
indicated and gridded every 1°. (a) The impact flash detected on November 26,
2006, at 01:30:29.030 UT has a significant correction due to the fact that it was
observed at a large zenith distance of 76.3° and (b) the impact flash detected on
March 25, 2007, at 00:59:10.176 UT was observed at a small zenith distance of
23.2° and therefore has only a very slight correction applied.
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5. GEOLOCATION CASE STUDY

The workflow for geolocating impact flashes on the Moon was developed following the
observation of an unusually bright impact flash. On March 17, 2013, at 03:50:53.981 UT, the
NASA Lunar Impact Monitoring Program observed the largest impact flash recorded since the
program began, as seen in figure 16. Such a bright event was thought to have produced a crater
large enough to be detected by the LRO, a NASA spacecraft mapping the Moon from lunar orbit.
Accurately determining the impact location from observations of the flash became a priority, as
LRO would need to know where to search for the crater.

Figure 16. Bright impact flash observed on March 17, 2013, at 03:50:53.981 UT.

The March 17 lunar impact imagery was first georeferenced following a rough version of the
workflow described in sections 3.3 and 3.4, but using the following: (1) Clementine imagery for the
basemap instead of LRO imagery, (2) ‘late impact’ flash imagery (captured 10 frames (333 ms) after
peak brightness) instead of the image at or close to peak brightness, and (3) the geometric center
of the flash instead of the intensity-weighted centroid. The late-impact image was georeferenced
three times and averaged to yield a crater location at 23.922+0.304° W., 20.599£0.172° N., as in
reference 11. The uncertainties listed were determined by taking the standard deviation of the three
attempts; they most certainly underestimated the uncertainty of the crater location.

These coordinates were submitted to LRO. On December 14, 2013, the spacecraft reported
finding and imaging the fresh impact crater associated with the March 17 impact flash. Its final
confirmed location was 24.3302° W., 20.7135° N.12 Comparing the actual crater location to the
nominal location determined by geolocating the impact flash using the rough workflow gives a dif-
ference of 0.39875°, corresponding to 12.096 km on the lunar surface. The actual crater is located
northwest of the original estimated location.
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A refined geolocation workflow, as described in section 3, was developed in early 2014.
Reprocessing the March 17 impact flash using the refined workflow yielded an impact location
at 24.1566° W., 20.6644° N., a distance of 5.1469 km from the observed crater. Applying the cor-
rection for differential refraction described in section 4.5, the impact location was found to be
24.2277° W., 20.6842° N. This is 3.0415 km from the observed location. Table 3 summarizes the
nominal impact locations found by various methods. Figure 17 shows the results of the rough
workflow, refined workflow, the refraction-corrected location and uncertainties, and the location
of the observed crater on the lunar basemap.

Table 3. Results of geolocating the March 17 impact flash using different methods
as compared to the LRO observed crater location. The radius of the
Moon was taken to be 1,738.1 km.

Angular Distance | Surface Distance
Longitude Latitude From Observed | From Observed
Method (°W.) (°N.) (deg) (km)
Rough workflow 23.922 20.599 0.39875 12.096
Refined workflow 24.1566 20.6644 0.169665 5.1469
Refined, with refraction correction 242277 20.6842 0.100261 3.0415
Observed 24.3302 20.7135 - -
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Figure 17. The location of the impact flash observed on March 17, 2013, at 03:50:53.981 UT.
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The georeferenced flash location using the rough work flow (blue ‘+’) and the refined
workflow (yellow ‘+’) are shown alongside the refraction-corrected flash location as
applied to the refined workflow solution (white ‘+’) and extremes in latitude and
longitude (red ‘+’) that represent the uncertainties in the final location. The location
of the fresh crater observed by LRO is marked in green.



6. RESULTS

Following the successful geolocation of the March 17 impact flash, the workflow was put
into production on the full set of impact flashes recorded by the NASA Lunar Impact Monitoring
Program, observed between November 2005 and January 2014. A total of 300 flashes were geolo-
cated following the process detailed in section 3 and corrected for differential atmospheric refrac-
tion following the discussion in section 4.5. A map of the impact flash locations, after application
of the differential refraction correction, is found in figure 18.

Table 4 lists the details for each flash, including the location determined using the geoloca-
tion workflow and the refraction-corrected location. In column 1, the flashes are numbered with
a MEO number in order of discovery, matching that on the NASA lunar impact web page
(<http://www.nasa.gov/centers/marshall/news/lunar/index.html>); in column 2, cross reference
(CR) numbers have also been added for flashes analyzed in reference 2. For each flash, the UT
date and time of observation is given in columns 3 and 4, as well the zenith distance of the Moon
in degrees at the time of observation in column 5. The measured flash location determined by the
geolocation workflow detailed in section 3 is listed in columns 6 and 7 in selenographic longitude
and latitude coordinates. Negative longitude coordinates indicate west longitudes; negative latitude
coordinates indicate south latitudes. Columns 9 and 10 list the refraction-corrected position of
the impact flash in selenographic coordinates, as described in section 4.5, with the amount of shift
given as the refraction correction in meters in projected map coordinates in column 8. The total
uncertainty in this location is given in column 11, also in projected map coordinates. This uncer-
tainty is translated into selenographic longitude (columns 12 and 13) and latitude (columns 14
and 15) extremes for each flash.

The following flashes could not be geolocated due the scarcity of lunar features visible in the
image: MEO flash No. 1 on November 7, 2005, at 23:40:53.040 UT; MEO flash No. 3 on June 4,
2006, at 04:48:35.338 UT; MEO flash No. 108 on August 3, 2006, at 03:17:10.234 UT; MEO flash
Nos. 8 and 9 on August 4, 2006, at 02:24:57.024 UT and 02:50:14.035 UT, respectively; and MEO
flash No. 176 on August 26, 2009, at 01:58:15.082 UT.
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Figure 18. Three hundred lunar impacts detected by the NASA Lunar
Impact Monitoring Program from November 2005 to January 2014.
The flash locations have been corrected for differential refraction.
No observations are made near the poles or along the line of
0° longitude. The map is gridded at intervals of 10°.
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7. CONCLUSION

A geolocation workflow has been developed to determine the location of lunar impact flashes
and their associated craters. The workflow has been applied to 300 flashes observed by the NASA
Lunar Impact Monitoring Program from 2005 to 2014. Applying this method to the bright impact
flash observed on March 17, 2013, yields a location in good agreement—within approximately 3 km,
after a differential refraction correction—with the crater discovered by LRO. The crater locations
determined from this work will hopefully be confirmed by future LRO discoveries of new craters as
it continues its mission. The ‘ground truth’ crater locations determined by LRO will provide future
opportunities to test the geolocation technique described in this TM.
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