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Introduction
• CI in Solid Rocket Motors (SRM) is characterized by undesirable 

fluctuations of pressure, velocity, and temperature
– Unsteady energy release from propellant surface
– Internal fluid dynamics i.e. vortex shedding, turbulence, etc.
– Chamber and grain geometry

• Modeling CI in SRMs requires accurate representation of the 
steady and unsteady flow parameters

• The present study investigates the feasibility and advantage of 
employing COMSOL in the prediction of CI in SRMs
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Combustion Instability Modeling
• Solid Propellant Performance (SPP) ’04 program is the industry standard 

SRM ballistics prediction software.
– One Dimensional fluid dynamics
– Three dimensional grain geometry and regression
– Includes various ballistics mechanisms (i.e. erosive burning, nozzle boundary 

layer loss…)
• Standard Stability Prediction (SSP) code uses outputs from SPP ‘04 to 

evaluate the Culick stability model. 
• Culick/wave equation stability model

– Flow parameters split into steady and unsteady terms
– Inhomogenous wave equation including mean flow terms on the right hand 

side.
– Unsteady terms modeled using 1-D homogenous wave equation
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Combustion Instability Modeling cont.
• Flandro/Jacob energy corollary model

– Myers unsteady energy corollary used to model flow disturbances in the 
presence of mean flow 

– Flow parameters split into steady and unsteady parts
– Model can account for acoustic, vortical, and thermal (entropy) oscillations
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• Jacob recast the Myers energy model into the traditional alpha notation
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COMSOL Implementation of CI Theory
• A CI analysis of a simplified SRM was conducted using multiple modules 

of COMSOL multiphysics
• The HMNF module was used to model the SRM internal ballistics

– Spalart-Allmaras turbulent flow model
– Slip boundary condition on all chamber and nozzle walls
– Gas injection modeled using St. Robert’s Law

• PA module was used to model the unsteady field variables
– Geometry truncated at the Mach = 1 plane
– Hard wall boundary used on all boundaries

• Acoustic Velocity Potential Equation (AVPE) modeled using the 
Coefficient Form PDE module. 
– AVPE is generated by combining the linearized conservation of mass and 

momentum equations
– Retain mean flow effects on the acoustics as Mach numbers exceed 0.2.

• Results from the PA module and the AVPE are post processed in 
conjunction with the HMNF results to calculate alpha for both CI models
– Alpha terms using the PA results are compared with SSP
– Alpha terms using the AVPE are compared with the PA results to measure 

improvement 
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HMNF Module
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• Inlet/propellant boundary condition
– Regression rate of the solid propellant was modeled using, 
– Conservation of mass at the propellant/flame surface provides the injection velocity, 

– The assumption is made that the flame temperature is independent of burning 
pressure

• The velocity is allowed to slip on the nozzle closure and cone walls
– Assists in extracting the M=1 plane
– Acoustics are insensitive to near wall mean flow velocities

• Mesh consists of 1,316,965 Tetrahedral, 61,233 Triangular, 855 Edge, and 
68 Vertex elements with focus applied to the nozzle

• Stationary analysis with the wall distance initializer

Fluid 
Property k Mn γ μ

Value 0.005315415 
[lbf/(s*R)]

0.02775 
[kg/mol] 1.1752 3.892E‐6 

[lbf*s/ft^2]



Pressure Acoustics and AVPE 
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Sonic PlaneHard Wall/No Flux

• Sound Hard Wall / No Flux boundary conditions were applied to all 
boundaries 
– Assumes zero acoustic absorption or excitation at boundaries 

• For the PA and AVPE models the required mean flow and material 
properties were supplied by the HMNF analysis

• AVPE allows for mean flow terms to affect the acoustics,

⁄ · · 2 ⁄ · · 2λ · 1⁄ 0

• In the Coefficient Form PDE module the terms of the AVPE containing 
mean flow parameters were incorporated using domain source terms

• Mesh consists of 1,144,440 Tetrahedral, 67,286 Triangular, 818 Edge, 
and 60 Vertex elements with focus applied to the sonic line

• Eignvalue studies were conducted for both modules



HMNF Results and SPP Comparison
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Ph (psi) Pa (psi) (lb/s) Thrust (lb)
HMNF 1.02 1.03 1.04 1.02
% diff 1.95 2.64 3.88 1.65

• HMNF results normalized by 
the SSP value.



PA Results and SSP Comparison
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Freq. (Hz) 1L 2L 3L 4L 5L 6L

PA 115 231 346 462 578 695

SSP 116 233 350 467 584 701

% diff 0.86 0.86 1.14 1.07 1.03 0.86
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AVPE Results and PA Comparison

11

Freq. (Hz) 1L 2L 3L 4L 5L 6L

PA 115 231 346 462 578 695

AVPE 115 230 345 460 576 692

% diff 0.0 0.43 0.29 0.43 0.35 0.43
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Conclusions
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• A simplified SRM was modeled using the COMSOL multiphysics
finite element software
– HMNF CFD was used to model mean flow parameters
– PA and Coefficient PDE modules were used to model flow 

unsteadiness
• Pertinent ballistics parameters from the HMNF analysis 

compared well with the industry standard SPP
• Acoustic frequencies and CI alpha terms from the PA module 

compare well with the industry standard SSP
• Coefficient PDE results compare well with the PA results with 

the calculated CI terms showing the effect of a more accurate 
mode shape definition.

• The present study demonstrates that COMSOL multiphysics can 
be used as a CI modeling tool and that the increased fidelity will 
result in improved results.


