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1 PRD Risk Statement 
Future human exploration missions will require extended EVAs that will expose astronauts to 

hypobaric and hypoxic atmosphere conditions.   This can result in risk of compromised health 

and performance to the crewmember. 

2 Executive Summary 
Extravehicular activity (EVA) is at the core of a manned space exploration program. Some 

elements of exploration may be safely and effectively performed by robots, but certain critical 

elements will require the trained, assertive, and reasoning mind of a human crewmember. To 

effectively use these skills, NASA needs a safe, effective, and efficient EVA component 

integrated into the human exploration program. The EVA preparation time should be minimized 

and the suit pressure should be low to accommodate EVA tasks without causing undue fatigue, 

physical discomfort, or suit-related trauma. Commissioned in 2005, the Exploration 

Atmospheres Working Group (EAWG) had the primary goal of recommending to NASA an 

internal environment that allowed efficient and repetitive EVAs for missions that were to be 

enabled by the former Constellation Program. At the conclusion of the EAWG meeting, the 8.0 

psia and 32% oxygen (O2) environment were recommended for EVA-intensive phases of 

missions.  

 

After re-evaluation in 2012, the 8/32 environment was altered to 8.2 psia and 34% O2 to reduce 

the hypoxic stress to a crewmember. These two small changes increase alveolar O2 pressure by 

11 mmHg, which is expected to significantly benefit crewmembers. The 8.2/34 environment 

(inspired O2 pressure = 128 mmHg) is also physiologically equivalent to the staged 

decompression atmosphere of 10.2 psia / 26.5% O2 (inspired O2 pressure = 127 mmHg) used on 

34 different shuttle missions for approximately a week each flight. 

  

As a result of selecting this internal environment, NASA gains the capability for efficient EVA 

with low risk of decompression sickness (DCS), but not without incurring the additional negative 

stimulus of hypobaric hypoxia to the already physiologically challenging spaceflight 

environment. This report provides a review of the human health and performance risks 

associated with the use of the 8.2 psia / 34% O2 environment during spaceflight. Of most concern 

are the potential effects on the central nervous system (CNS), including increased intracranial 

pressure, visual impairment, sensorimotor dysfunction, and oxidative damage. Other areas of 

focus include validation of the DCS mitigation strategy, incidence and treatment of transient 

acute mountain sickness (AMS), development of new exercise countermeasure protocols, 

effective food preparation at 8.2 psia, assurance of quality sleep, and prevention of suit-induced 

injury. Although missions proposing to use an 8.2/34 environment are still years away, it is 

recommended that these studies begin early enough to ensure that the correct decisions 

pertaining to vehicle design, mission operational concepts, and human health countermeasures 

are appropriately informed. 
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3 Introduction 
Over the past several decades, NASA has operated spacecraft habitable elements and spacesuits 

at a variety of different atmospheres. Early missions during the Gemini and Apollo programs 

were short duration and relied on low-pressure, 100% O2 environments. Skylab missions were 

longer in duration but still employed a low-pressure (5 psia), 70% O2 environment. NASA’s 

more recent programs, including the Space Shuttle Program and International Space Station 

(ISS) program have operated at an Earth-equivalent sea level atmosphere of 14.7 psia and 21% 

O2. Selection of this atmosphere facilitated international partnerships and allowed in-flight 

scientific studies to have ground-based controls, with gravity as the primary variable of interest.  

 

In 2005, the EAWG was convened to formulate recommendations on the designs of habitable 

internal environments to inform requirements for the development of vehicles during the 

Constellation Program [1]. The process used to select among several candidate environments is 

detailed in the EAWG final report, which was first published as an internal NASA document [2] 

and then later as a NASA Technical Paper [1]. The primary trade space applied to the EAWG 

analysis for the lunar and Mars habitat and surface spacesuit designs consisted of hypoxia, 

flammability, and DCS. 

 

The 2006 EAWG recommendations were as follows: 

 Launch and transport vehicle should operate within the existing ISS and shuttle standard 

environment designs of 14.7 psia / 21% O2 and 10.2 psia / 26.5% O2  

 Lunar and Mars landers should operate at both 10.2 psia / 26.5% O2 and 8.0 psia / 32% 

O2 

 Surface spacesuits should operate at 100% O2 and at a pressure range of 3.5 to 8.0 psia 

 Long-duration lunar and Mars habitats should operate at 8.0 psia / 32% O2 nominally 

with an option to decompress further to 7.6 psia / 32% O2  

 Atmospheric recommendations assumed a control box of ± 0.2 psia total pressure and ± 

2.0% O2 concentration 

 

The consensuses of the EAWG were the recommendations for a lower-pressure surface habitat 

and a surface spacesuit with a variable operating pressure range. The 8 psia / 32% O2 (henceforth 

referred to as 8/32) environment was selected because it was considered to be a mildly hypoxic 

atmosphere with acceptable flammability risk and low O2 prebreathe (PB) overhead to maintain 

acceptable DCS risk [1]. The proposed forward work related to human physiology was almost 

solely related to DCS, with no mention of hypoxia research.  

 

The EAWG recommendations were developed through a multi-discipline working group and 

concurred upon by the heads of the Johnson Space Center (JSC) Engineering, Space and Life 

Sciences, and Flight Crew Operations Directorates as well as the manager of the JSC 

Extravehicular Activity Office. However, attempts to move forward with vehicle designs based 

on the EAWG report were met with mixed approval because the recommendations were not 

captured anywhere outside of the Constellation Program documentation. The Exploration 

Atmosphere Action Team convened in 2012 to review the 8/32 atmospheric recommendation 

and moved to alter the environment to 8.2 psia and 34% O2 to reduce the hypoxic stress without 

affecting DCS risk or materials concerns [3]. This recommendation was presented to the NASA 
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Human Exploration and Operations Mission Directorate (HEOMD) Associate Administrator, 

who then provided a memorandum that directed programs under HEOMD to begin the work to 

enable the updated Exploration Atmosphere of 8.2 psia and 34% O2 [4]. 

 

3.1 Why and When 8.2/34 
Multiple reasons were proposed for the use of the 8.2/34 environment.  A primary benefit of this 

atmosphere is a reduction in O2 PB time for EVA since atmospheric ppN2 would decrease from 

11.6 psia in a 14.7/21 environment to 5.4 psia in a 8.2/34 environment. This minimizes the 

difference between tissue ppN2 and the lowest anticipated suit pressure of 4.3 psia.  With the 

8.2/34 option, it is expected that a 15-minute PB may be all that is necessary to achieve 

acceptable risk of DCS during EVA. An 8.2 psia cabin pressure also allows operational use of a 

suitport, which greatly reduces the complexity and overhead associated with EVA suit donning. 

The current expectation is that an astronaut could don the EVA suit through a suitport and 

complete all necessary checkout procedures and EVA prep during this 15-minute PB window. 

Additionally, suitport-compatible suits are proposed to be variable-pressure suits capable of 

operating from the 8.2 psia cabin pressure down to the expected EVA-operating suit pressure of 

4.3 psia. A variable-pressure suit also provides immediate treatment capability for DCS because 

the suit could be repressurized to 8.2 psia in the field without requiring reentry into the cabin. 

Furthermore, the short transition times between suit and cabin allow for intermittent 

recompressions, further reducing the risk of DCS. 

 

Beyond the control of DCS to acceptable risk levels, the 8.2/34 environment coupled with 

suitport operations is a paradigm shift from NASA’s ISS and shuttle EVA protocols. Unlike the 

ISS construction and maintenance EVAs, which were well understood and very specific, 

exploration EVAs will be driven by choices made at the destination. Exploration crews need a 

robust and flexible EVA capability, which is provided by coupling the 8.2/34 environment with 

suitport operations. This combination provides an on-demand EVA capability including short-

duration EVA, multiple EVAs per day, and single-person EVA. 

 

Application of the 8.2/34 environment is only needed during high EVA-frequency phases of a 

mission. The 8.2/34 environment is not needed for launch or transit to the destination, although 

the capability should be considered for all habitable elements to ensure transitions between 

different elements can be accomplished during contingency situations. Currently, any element 

expected to operate in the 8.2/34 environment (other than the EVA suit) will also be capable of 

repressurizing and operating at 14.7/21.  

 

3.2 Important Changes since the 2006 EAWG Final Report 
Much has changed at NASA since the 2006 EAWG recommendations, including cancellation of 

the Constellation Program, development of the Multi Mission Space Exploration Vehicle 

(MMSEV) concept, movement toward a Capability-Driven Framework for space exploration, 

advances in our understanding of human adaptation to the spaceflight environment, and the 

identification of new human risks and hazards.  
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3.2.1 Constellation Program Cancellation 
One of the largest changes since the EAWG was the cancellation of the Constellation Program. 

This program featured a clear target of the moon with rapidly evolving operational concept 

development. The requirement for an Exploration Atmosphere of 8/32 was kept in the 

Constellation Architecture Requirements Document. It is difficult to quantify how much this 

affected implementation of the EAWG recommendations for vehicle requirements, research, and 

development. It could be that discontinuity with personnel in the intervening years coupled with 

a change from a well-defined lunar target to a capability-driven framework contributed to some 

of the concerns about using the EAWG report as an approved baseline.  

 

3.2.2 MMSEV and Suitport Development 
Over this same time period, new space exploration vehicles and spacesuits were designed and 

developed in accordance with the recommendations from the EAWG. One of these vehicles is 

the MMSEV, which began as a small pressurized rover for the lunar environment. It has since 

developed additional capability beyond lunar and Mars surface operations to now include 

variants with operating capacity in the microgravity environment as well, either as a way-station 

habitat or as a near-Earth asteroid (NEA) exploration vehicle. The MMSEV assumed the 8/32 

environment as the NASA baseline and has developed both a suitport and a variable-pressure 

rear-entry suitport-compatible EVA suit. Use of a variable-pressure EVA suit with suitport 

enabled by the 8/32 internal environment yields several benefits. From an operational standpoint, 

NASA gains the capability for single-person EVA, short EVA, multiple EVAs in a single day, 

enhanced waste removal using a suitport transfer module, reduced consumables, and high work 

efficiency index. In terms of safety, there is reduced overhead for meeting acceptable DCS risk, 

multiple vehicle reentry points, and immediate capability for DCS treatment through 

repressurization of the EVA suit.  

 

3.2.3 Independent Pressure Effect on Hypoxic Dose 
Although not a new debate, recently, there has been considerable discussion on whether 

normobaric hypoxia (NH) elicits the same hypoxic symptoms as hypobaric hypoxia (HH) [5] [6] 

[7]. In many cases, the differences may not reach statistical or clinical significance, but the 

general trend indicates that almost all measurable changes associated with hypoxic exposures 

trend worse in the case of HH compared with NH for the same hypoxic PIO2. Given that the 8/32 

environment is an engineered environment and does not exist in nature, a standard equivalent air 

altitude (EAA) may not be fully representative of the hypoxic stress. An 8 psia atmospheric 

pressure (PB) is associated with an actual altitude of 4,877 m (16,000 ft).  It is the enrichment of 

O2 from 21% to 32% that reduces the hypoxic stress to an EAA of approximately 1,830 m (6,000 

ft).  It is unknown whether the increased hypobaric exposure will increase the hypoxic dose, but 

at least one literature review suggested that the 8/32 environment increased the risk of AMS 

from the proposed EAA of approximately 1,830 m (6,000 ft) to 2896 m (9,500 ft) [8]. This 

hypothesis is based on a literature review and a proposed model and has not been validated, but it 

does point to the need for human exposure research in the 8/32 environment. A more recent 

review lends further support that NH and HH are not equivalent for acute and subacute 

exposures and suggests that using NH as a surrogate for HH during chronic exposures is 

inappropriate [9]. 

 



Risk of Hypoxia from the Exploration Atmosphere 

8 

 

Research is warranted to evaluate a possible PB effect on hypoxic adaptations.  Results from 

these studies will aid in the understanding of human physiology in the proposed 8.2/34 

environment as well as inform the scientific community on how best to proceed with hypoxia 

research. In research settings, it is easier to design and operate systems that manipulate PIO2 by 

reducing FIO2 at 14.7 psia rather than reducing PB with or without O2-enrichment. However, in 

situations where the PB effect is significant, human or animal research will require true ascent-to-

altitude or hypobaric chamber studies. 

 

3.2.4 Visual Impairment / Intracranial Pressure Syndrome 
Because of its prevalence and potential mission impact, visual impairment / intracranial pressure 

(VIIP) is considered the top human system risk in the ISS Program. Currently, VIIP is a poorly 

understood syndrome with potential for permanent damage to the ocular and central nervous 

systems. The changes that have been observed to date are developing in microgravity without 

additional exposure to HH. While the pathophysiology of VIIP is under active investigation, the 

addition of HH to the spaceflight environment may exacerbate the problem.  

 

3.2.5 Elevated Carbon Dioxide on ISS 
Elevated carbon dioxide (CO2) is a known problem in a closed system with humans in the loop. 

On Earth, the ambient CO2 concentration is approximately 0.23 mmHg (0.03%). In spacecraft, it 

is not practical to control CO2 to such low levels because of power and consumable constraints, 

and CO2 levels on the ISS have typically been 2.3 to 5.3 mmHg (0.5 ± 0.2%), a ten-fold increase 

compared with terrestrial levels [10]. Over the years, ISS crewmembers have been found to 

develop CO2-related symptoms, such as headache and lethargy, at lower-than-expected CO2 

levels, and symptoms tend to resolve when ambient CO2 is decreased [11]. While work to 

quantify this association is ongoing, chronic CO2 exposure appears to be a contributing factor to 

several in-flight medical issues, including VIIP [11] [12]. The CO2 elevation will likely 

complicate the adaptation to a mildly hypoxic environment, potentially making physiological 

symptoms worse. 

4 Evidence for Hypoxia-Induced Physiological Concerns 
This section will discuss the physiological concerns and impacts related to the mild hypoxic 

atmosphere of the 8.2/34 environment. Decreasing the O2 delivery to all the bodily organs and 

systems has an impact on all physiological functions. However, the 8.2/34 environment only 

induces a mild hypoxic stimulus, which we would not be concerned about in itself on the surface 

of the Earth. We know that humans adapt well to altitude with a similar ambient O2 partial 

pressure as the 8.2/34 environment, with millions of people residing at altitudes greater than 

4000 ft and even more people transiently experiencing mild hypoxia during airplane flights 

ranging from 5000-8000 ft. Such an environment in combination with other spaceflight factors, 

such as microgravity and space radiation, is of concern because the additive and/or synergistic 

effects might impair human health and performance to an unacceptable risk level. In particular, 

the effects on brain and ocular physiology are of concern because we lack knowledge as to how a 

decrease in ambient O2 partial pressure – however small – in space might affect the pressure in 

the brain and eyes and thus human performance. In addition, we do not know how the 

combinatorial effects of a mildly hypoxic atmosphere and mildly hyperoxic EVA suit 
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atmosphere affect cellular pathways and whether they induce oxidative stress and damage, 

threatening human health to an unacceptable level. Consequently, the addition of mild hypoxia 

and its effect on the human system will be needed to augment existing NASA human research. 

Particular emphasis should be placed on brain and ocular function, sensorimotor performance, 

and cellular oxidative stress and damage. 

 

4.1 Hypobaric Hypoxia in Space 
The use of a mildly hypobaric hypoxic environment has been used for short-term exposures to 

facilitate EVA during both the shuttle and ISS programs. One serendipitous finding was that 

8.2/34 is almost physiologically equivalent to the atmosphere of 10.2 psia and 26.5% O2 used on 

the shuttle. A comparison of the two environments is shown in Table 1, demonstrating that the 

two environments are almost equivalent with respect to the hypoxia level, but that 8.2/34 

presents a much lower tissue N2 saturation level.  

 

Any human health and performance data available from missions employing the 10.2/26.5 

environment may be helpful toward understanding the implications of employing a mildly 

hypoxic environment during flight. Table 2 describes the number of days at 10.2/26.5 as well as 

the crew size and total man-days. Days at 10.2/26.5 were calculated though a data mining 

process using the Archive Data Retrieval (ADRIFT) subprogram in the Java Mission Evaluation 

Workstation System (JMEWS) data system.   

The average duration at 10.2/26.5 was 3.48 days, with 24 of the 33 missions decompressing to 

10.2/26.5 for less than 4 days. The longest mission using 10.2/26.5 was STS-61, which 

decompressed for 8.1 consecutive days.  

Data mining efforts using both the Lifetime Surveillance of Astronaut Health (LSAH) and Life 

Sciences Data Archive (LSDA) are underway to evaluate whether there are any crew medical 

complaints related to hypoxia or if there are any past studies that may have data across both 10.2 

and sea-level Shuttle missions. 

Table 1. Comparison of the 8.2/34 Environment to the Shuttle 10.2/26.5 Atmosphere 

PB 

psia 
O2% 

ppO2  

mmHg 

PAO2 

mmHg 

EAA 

m (ft) 

ppN2 

(mmHg) 

10.2 26.5 140 87 1265 (4150) 388 

8.2 34 144 88 1213 (3980) 280 

Difference +4 +1 -170 -108 
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4.2 VIIP Syndrome 
Because of its prevalence and potential mission impact, visual impairment / intracranial pressure 

(VIIP) is considered the top human system risk in the ISS Program. Currently, VIIP is a poorly 

understood syndrome with potential for permanent damage to the ocular and central nervous 

systems. The changes that have been observed to date are developing in microgravity without 

Table 2. Spaceflight Experience with the 10.2 psia / 26.5% O2 Environment 

Flight Launch Landing 
Crew 
Size 

Last EVA 
Days at 
10.2/26.5 

Man Days at 
10.2/26.5 

STS-41B 02/03/1984 02/11/1984 5 02/09/1984 3.32 16.58 

STS-41C 04/06/1984 04/13/1984 5 04/11/1984 4.83 24.13 

STS-41G 10/05/1984 10/13/1984 7 10/11/1984 1.36 9.54 

STS-51A 11/08/1984 11/16/1984 5 11/14/1984 3.74 18.70 

STS-51D 04/12/1985 04/19/1985 7 04/16/1985 2.10 12.60 

STS-51I 08/27/1985 09/03/1985 5 09/01/1985 2.87 14.34 

STS-61B 11/26/1985 12/03/1985 7 12/01/1985 3.14 21.95 

STS-37 04/05/1991 04/11/1991 5 04/08/1991 2.92 14.59 

STS-49 05/07/1991 05/16/1992 7 05/14/1992 7.13 49.92 

STS-54 01/13/1993 01/19/1993 5 01/17/1993 2.28 11.40 

STS-51 09/12/1993 09/22/1993 5 09/16/1993 2.74 13.70 

STS-61 12/02/1993 12/13/1993 7 12/08/1993 8.10 56.68 

STS-64 09/09/1994 09/20/1994 6 09/16/1994 1.33 7.99 

STS-69 09/07/1995 09/18/1995 5 09/16/1995 1.97 9.86 

STS-72 01/11/1996 01/20/1996 6 01/17/1996 3.70 22.21 

STS-76 03/22/1996 03/31/1996 6 03/27/1996 0.77 4.62 

STS-82 02/11/1997 02/21/1997 7 02/17/1997 7.18 50.28 

STS-87 11/19/1997 12/05/1997 6 12/03/1997 1.63 9.78 

STS-88 12/04/1998 12/15/1998 6 12/12/1998 7.76 46.59 

STS-96 05/27/1999 06/06/1999 7 05/29/1999 2.53 17.73 

STS-103 12/19/1999 12/27/1999 7 12/24/1999 5.23 36.58 

STS-101 05/19/2000 05/29/2000 7 05/21/2000 1.10 7.72 

STS-106 09/08/2000 09/20/2000 7 09/17/2000 0.79 5.54 

STS-92 10/11/2000 10/24/2000 7 10/18/2000 3.89 27.20 

STS-97 11/30/2000 12/11/2000 5 12/07/2000 5.88 29.42 

STS-98 02/07/2001 02/20/2001 5 02/14/2001 3.95 19.77 

STS-102 03/08/2001 03/21/2001 7 03/12/2001 1.73 12.13 

STS-100 04/19/2001 05/01/2001 7 04/24/2001 2.50 17.53 

STS-104 07/12/2001 07/24/2001 5 07/17/2001 1.92 9.62 

STS-105 08/10/2001 08/22/2001 4 08/18/2001 1.41 5.65 

STS-108 12/05/2001 12/17/2001 7 12/10/2001 0.81 5.68 

STS-109 03/01/2002 03/12/2002 7 03/08/2002 7.32 51.26 

STS-125 05/11/2009 05/24/2009 7 05/18/2009 6.97 48.81 

Total 114.93       712.24 
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additional HH exposure. While the pathophysiology of VIIP is under active investigation, the 

addition of HH to the spaceflight environment may exacerbate the problem.  

 

4.2.1 VIIP during Spaceflight 
The VIIP syndrome was first described in 2006 with the observation of papilledema, vision 

changes, and increased intracranial pressure in long-duration astronauts returning from the ISS. 

However, post-flight questionnaires obtained between 1989 and 2011 revealed that 23% of 

shuttle and 48% of ISS long-duration mission astronauts reported a subjective degradation in 

vision [13], suggesting that spaceflight-induced visual impairment and intracranial hypertension 

may have been occurring in astronauts although the syndrome was not recognized until the 

technology advanced sufficiently to evaluate and look for it [14]. Based on a case definition 

developed by expert consensus, 15 cases have been identified among the 36 long-duration 

astronauts to date, although not all of these 36 astronauts have been fully evaluated. Although 

direct in-flight measurements have not been made, in-flight signs of papilledema and post-flight 

changes in brain imaging have documented evidence of elevated intracranial pressure (ICP). In 

addition, post-flight lumbar puncture in four ISS crewmembers has indicated elevated ICP 

ranging from 21.0 to 28.5 cmH2O (normal range: 5 to 15 cmH2O). Of note, ICP may remain 

elevated long after flight in some of the returning symptomatic astronauts, over 18 months in one 

case [13]. 

Microgravity exposure induces a cephalad fluid shift likely resulting in elevated ICP. It is 

possible that the cephalad fluid shift accounts for a 50% increase in ICP in the microgravity 

environment compared with 1-g [15]. In addition, it is known that the average CO2 level is 

elevated on the ISS, which may further increase ICP due to its potent vasodilator effects. Up to 

an additional 12% increase in ICP may be attributed to current CO2 levels on ISS [16]. Thus, a 

combination of the microgravity-induced cephalad fluid shift and high ambient CO2 levels very 

likely increases ICP in astronauts, leading to known visual acuity problems and possible impacts 

on cognitive brain function.  

 

4.2.2 VIIP and Hypoxia 
One concern associated with HH alone is the incidence of AMS (to be discussed further in 

Section 4.4), which lies within the spectrum of high-altitude headache to high-altitude cerebral 

edema. High-altitude cerebral edema is associated with increased ICP [17] [18] [19]. AMS itself 

appears to be strongly associated with increased optic nerve sheath diameter, reflecting increased 

ICP [20]. Sutherland et al. found that the optic nerve sheath diameter increased in 13 

mountaineers from sea level to exposures at 2000, 3700, 5200, and 6400 m (6562, 12139, 17060, 

and 20997 ft) [21]. Increased optic nerve sheath diameter has been found to correlate positively 

with ICP based on the fact that the subarachnoid cerebrospinal fluid (CSF) compartment 

communicates with the perioptic CSF space. Therefore, increases in intracranial CSF pressure 

are transmitted to the perioptic CSF space and may be measured as changes in the optic nerve 

sheath diameter. More directly, Yang, et al. found that upon exposure to an altitude of 4,000 m 

(13,123 ft) for 2 hours, ICP measured by an intraventricular catheter increased by 78% from 15.4 

to 27.4 cmH2O in hypoxic goats compared with nonhypoxic goats [22]. Physiologically, any 

decrease in O2 delivery results in vasodilation of cerebral vessels to increase brain blood flow 

and elevate ICP. With the addition of microgravity-induced intracranial hypertension, it is likely 

that astronauts would develop greater increases in ICP in an 8.2/34 environment than in 14.7/21. 

Even limited exposures to 8.2/34 may exacerbate VIIP in an additive or synergistic manner. 
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Moreover, in the setting of papilledema, hypoxia is expected to worsen optic nerve ischemia. 

Hypoxia at altitude is associated with optic disc swelling, hypothesized to be due to a hypoxia-

induced increase in cerebral blood flow that disrupts the blood-brain barrier and results in 

cerebral edema [23] [24]. Altitude-associated optic disc swelling has been described since 1969 

[19]; a recent study of 27 high-altitude mountaineers by Bosch, et al. [23] revealed optic disc 

swelling in 59% of the climbers. Furthermore, high-altitude retinopathy, typically described as 

retinal vascular engorgement and tortuosity, has been associated with decreased visual acuity and 

cotton wool spots [25], two of the diagnostic hallmarks of VIIP [14]. There is enough overlap 

between spaceflight-induced VIIP and altitude illnesses to warrant precaution about intentionally 

adding HH to spaceflight. The concern is that an 8.2/34 environment would worsen visual 

changes, potentially leading to a decreased ability to perform tasks and possible permanent 

damage. 

 

4.2.3 VIIP Conclusion 
Currently, 42% of ISS crewmembers are affected by the VIIP syndrome, 15% of whom are 

severely affected, in a normobaric, normoxic (14.7 psi / 20.9% O2) environment. Because of its 

prevalence and potential mission impact due to visual and CNS impairment, VIIP is considered 

the top human system risk in the ISS Program. It should be noted that the changes that have been 

observed to date are developing in microgravity without additional exposure to HH. The 

combinatorial effects of spaceflight environmental factors, such as microgravity and high 

ambient CO2 levels, with an 8.2/34 environment are unknown and could potentially negatively 

impact brain blood flow and cognitive abilities based on current knowledge of the VIIP 

syndrome.  

 

4.3 Sensorimotor Performance 
Sensorimotor disturbances are well known to occur during spaceflight, and these changes may be 

exacerbated by the introduction of HH with the 8.2/34 environment. 

4.3.1 Sensorimotor Performance during Spaceflight 
Astronauts experience disturbances in sensorimotor function during periods of adaptive change 

on initial exposure to microgravity and on return to a gravity environment. These disturbances 

include spatial disorientation, space motion sickness, alterations in gaze control, and postflight 

postural instability and gait ataxia [26] [27] [28] [29] [30] [31]. Importantly, sensorimotor 

disturbances are more profound as the duration of exposure to microgravity increases. These 

changes can impact in-flight operational activities, including spacecraft landing, docking, remote 

manipulation, and EVA performance. In addition, postflight postural and gait instabilities could 

prevent or extend the time required to make a nominal or an emergency egress from a spacecraft. 

 

4.3.2 Sensorimotor Performance and Hypoxia 
The retina is extremely sensitive to changes in O2; therefore, acute hypoxia can lead to 

decrements in visual function. These changes are less profound in the mild hypoxic range; 

however, performance decrements have been observed [32]. In one study that focused on visual 

performance specifically in the hypoxic range of 1,830 to 2,438 m (6,000 to 8,000 ft), mesopic 

vision was impaired [33]. Mesopic vision refers to visual performance under low-light but not 
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quite dark conditions, equivalent to those experienced during twilight. Given potential low-light 

conditions during planetary operations, this decrease in visual performance may have operational 

implications.  

 

Mild hypoxia has also been shown to have an effect on the postural control system [34] [35] 

[36]. Postural sway measured in subjects standing on a force plate was shown to increase 

compared with ground-level controls at simulated altitudes of 1,524, 2,438, and 3,048 m (5,000, 

8,000, and 10,000 ft) [34]. The postural control system receives input from several sensory 

modalities, including information from vision; the vestibular system; proprioception from joints, 

tendons, and muscles; and tactile information. These multiple sensory informational sources are 

integrated in the CNS to aid in the control of postural equilibrium. Therefore, a change in 

postural equilibrium control can serve as a sensitive indicator of mild hypoxic effects on multiple 

sensory systems along with the efficacy of their central integration. 

 

In terms of pilot flight control performance, exposure to mild hypoxia does not have a significant 

impact on manual control ability for tasks such as maintaining assigned altitudes and navigation; 

however, procedural errors appear to increase at the 3,048-m (10,000-ft) level [37]. These events 

include misdialing frequency codes and failure to follow air traffic control instructions. In a 

study using self-report questionnaires to assess hypoxic symptoms of helicopter aircrew 

operating at altitudes below 3,048 m (10,000 ft), aircrew reported potentially operationally 

significant symptoms of hypoxia at a mean altitude of 2,590 m (8,497 ft) [38]. 

 

During gravitational transitions, sensorimotor systems undergo adaptive changes to match motor 

output to the prevailing environment. It is currently unknown what the impact of hypoxia is on 

this essential process of sensorimotor adaptive change. Does hypoxia hinder the adaptive 

response, thereby prolonging the period of sensorimotor disturbance experienced during 

gravitational transitions? If hypoxia interacts negatively with the nominal sensorimotor adaptive 

process, performance decrements, including changes in dynamic visual acuity, postural and gait 

instability, and spatial disorientation, may be exacerbated, impacting performance and mission 

success. In addition, there are well-known vestibular-evoked responses recorded from respiratory 

muscle nerves that serve to provide adjustments in breathing and airway patency during 

movements and changes in posture [39]. It is possible that vestibular adaptation shortly following 

G-transitions may negatively impact the respiratory compensation in the 8.2/34 environment. 

Singh, et al. [40] observed that altered vestibular function, such as increased sway at high 

altitudes, may reverse with acclimatization. Therefore, sensorimotor interactions with the 8.2/34 

environment are likely to be more important within the first few days following the transitions 

between G states. 

 

4.3.3 Sensorimotor Performance Conclusion 
From a sensorimotor perspective, mild hypoxia can induce alterations in performance, including 

visual and postural stability decrements and some alterations in piloting ability. These effects are 

not profound in terms of overall impact on performance; however, in combination with other 

factors unique to spaceflight, these performance decrements may reach the threshold of 

impacting mission capability. 
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To determine whether sensorimotor adaptive mechanisms are negatively affected by the 8.2/34 

environment, the following studies could be performed to compare the normoxic adaptive 

response with the 8.2/34 hypoxic environment: 

 

 Gaze control and dynamic visual acuity adaptive responses to vision-distorting lenses 

(e.g., magnifying, minifying) 

 Manual control adaptive responses to modified joystick input 

 Gait adaptation to an unstable walking support surface 

 Combined effects of multitasking and increased G (entry profile) on adaptive 

responses 

 

If performance decrements are observed that are related to hypoxic-derived reductions in the 

adaptation ability of sensorimotor systems, countermeasures could be developed to mitigate 

these changes. One potential countermeasure entails hypoxic preconditioning training [41] [42] 

[43]. This training paradigm engages the endogenous mechanisms by which the brain protects 

itself against cerebral ischemia by exposing the subject to a noxious stimulus near to but below 

the threshold for damage. Following the preconditioning training, a tolerance is developed to the 

same or even different noxious stimulus beyond the usual threshold for effect. This type of 

training has been used successfully to develop an increased tolerance for ischemic stress. In this 

context, preconditioning to mild hypoxia could be used as a training countermeasure to reduce 

the hypoxic performance decrements associated with exposure to mild hypoxia and adaptive 

sensorimotor responses. 

 

4.4 Acute Mountain Sickness  
AMS affects individuals that ascend rapidly to altitude, with symptoms such as headache, 

nausea, vomiting, disturbed sleep, and poor physical performance [44]. The acute change in 

ambient ppO2 from normoxic (159 mmHg) to the ppO2 of 144 mmHg associated with the 8.2/34 

environment can result in the possibility that some crewmembers may develop transient 

symptoms of AMS. Between 7% and 25% of adults may experience mild AMS near 2,000 m 

(6,562 ft) [44] [45]. The risk of AMS is modified by several factors, including the ascent rate to 

altitude, activity level at altitude, and individual susceptibility [46]. HH appears to induce AMS 

to a greater extent than does either normobaric hypoxia or normoxic hypobaria [47].  

 

AMS symptoms have been recorded using the Lake Louise symptom questionnaire (LLSQ) and 

include headache plus nausea, dizziness, fatigue, or sleeplessness that develops over a period of 

6 to 24 hours. While expected to be mild and transient, these symptoms could potentially impact 

crew health and performance on critical mission tasks during lunar surface missions. AMS 

headaches are reported to be throbbing, bi-temporal, or occipital, typically worse during the night 

and upon awakening. Such headaches have implications for sleep quality. When combined with 

nausea, they can be likened to the flu or a hangover. Clinical findings confirm a change in mental 

status, ataxia, peripheral edema, or changes in performance (reduction in normal activities) [44]. 

 

One of the largest studies on AMS was conducted by Anderson, et al. [48] during rapid ascent to 

the Amundsen-Scott South Pole Station (2,835 m [9,300 ft]) in Antarctica. Of 246 subjects, 52% 

developed LLSQ-defined AMS (Figure 1). Anderson et al. are currently working on some 

follow-up manuscripts that will describe the known physiological differences between the 
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subjects who reported AMS and the subjects who had no AMS symptoms. The most common 

symptoms were shortness of breath with activity (87%), sleeping difficulty (74%), headache 

(66%), fatigue (65%), and dizziness/lightheadedness (46%) (Figure 2). Symptom reports at the 

South Pole were mild to moderate in severity, with symptom prevalence peaking on the day after 

arrival at altitude (day 2, approximately 12 to 18 hours after arrival); however, in greater than 

20% of individuals, shortness of breath with activity, fatigue, and sleep problems persisted 

through day 7. This result reflected conventional knowledge that symptoms appear between 6 

and 48 hours after arrival and resolve within the first 3 days [48]. 

 

Located on the high plateau of Antarctica at an elevation of 2,835 m (9,300 ft), the environment 

of South Pole Station closely reflects the 8.2/34 environment as well as the operational profile of 

NASA mission scenarios. Most jobs at South Pole Station require physical activity, with a 

significant portion of personnel working outdoors. Activities include construction, heavy 

equipment operation, transport of supplies, science support, research, and fuel delivery [48]. This 

environment could serve as a high-fidelity, ground-based analog with which to research hypoxic 

effects within a true mission-like environment. 

 

 
 

 

Figure 1. Percentage of participants who reached their maximum LLSQ symptom 

score during the first 7 days at South Pole Station (2,835 m [9,300 ft]) [48]. 
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4.4.1 AMS Risk Specific to 8.2/34 Condition 
It appears through an extensive literature search [49] and statistical analysis of available data [8] 

that the 1,830-m (6,000-ft) EAA computed for the initial 8.0/32 environment may have a greater 

risk of AMS than one would expect at this altitude. This independent pressure effect on true 

hypoxic dose appears real and has been suspected since 1946. Since the derivation of the alveolar 

gas equation was published [50], there has been a physiologically founded expectation of 

different outcomes under normobaric and hypobaric hypoxia given the same hypoxic PIO2, 

termed the nitrogen dilution or the respiratory exchange ratio effect [51]. In the current context, 

there are two cases: the first is the equivalent air altitude case with assumed exposure to 1,830-m 

(6,000-ft, 11.8 psia) breathing air (21% O2), and the second is the exploration atmosphere case 

with exposure to 4,877 m (16,000 ft, 8.0 psia) at 32% O2. The difference between these two 

exposures is 3,048 m (10,000 ft), but the PIO2 is identical at 117 mmHg, and it appears that the 

risk of AMS is greater in the exploration atmosphere case due to the lower total pressure [8]. 

Without considering acclimatization to mild hypoxia from one vehicle to the next, there is 

approximately a 25% probability of AMS per crewmember for the initial 8.0/32 environment and 

approximately a 10% probability of AMS for the proposed 8.2/34 environment [8]; this also 

assumes no further negative interactions due to adaptation to microgravity. 

 

Research is justified to measure the acute mild hypoxic response to the 8.2/34 environment. It 

seems that the magnitude of the pressure effect on true hypoxic dose is a function of the hypoxic 

PIO2. The pressure difference between 11.8 and 8.0 psia may or may not be sufficient to measure 

 

Figure 2. Severity of the most commonly reported symptoms over the first week of exposure in 

personnel rapidly transported to the South Pole (2,835 m [9,300 ft]) [48]. 
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a pressure effect on the onset, intensity, and incidence of AMS, given a reasonable sample of 

human subjects. If time and money resources are not available, staged decompression and 

pharmacological mitigation strategies should be developed to reduce and manage the predicted 

risk of AMS.  

 

4.5 Exercise Performance 
Exercise is a primary countermeasure for many of the negative physiological changes associated 

with spaceflight. Any expected change to exercise performance, such as mild hypobaric hypoxia, 

will need to be evaluated to determine if there are difference exercise countermeasures required 

during use of the 8.2/34 environment. 

4.5.1 Exercise Performance during Spaceflight 
Maintenance of exercise performance is of crucial importance for mobility of astronauts during 

long-duration missions and upon return to 1-g. Despite crew allocation of approximately 2.5 

hours per day to exercise, current exercise countermeasures are not fully effective in protecting 

against spaceflight-induced decrements in muscle, cardiovascular function, and bone health. For 

example, ISS crewmembers (Expeditions 1 through 15, n = 18) demonstrated mean decreases in 

isokinetic knee extensor and flexor strength of 11% and 17%, respectively [52], 10% reductions 

in maximal aerobic capacity [53], and 2% to 7% decreases (depending on site) in bone [54]. 

Recent analysis, including data from crewmembers with access to the advanced resistive exercise 

device (ARED), demonstrates that resistive exercise using ARED combined with adequate 

dietary intake has been even more effective in preserving bone mineral content and lean body 

mass [55]. It is now generally perceived that the current exercise countermeasure suite is 

effective in preserving muscle strength and aerobic performance if protocols are adhered to and 

adequate nutritional intake is maintained. There is a need to prevent spaceflight-related 

deconditioning to protect the health and mission readiness of current ISS crew as well as to 

enable NASA to protect the fitness of longer-duration astronauts on moon, Mars, and NEO 

missions. 

 

4.5.2 Exercise Performance and Hypoxia 
Exposure to hypoxia is associated with a number of adaptive responses, which could act 

synergistically with microgravity to further impair muscle and exercise performance. Acutely, 

acclimatization to a moderate altitude, e.g., 3,048 m (10,000 ft), takes approximately 3 weeks, 

during which time there is impairment in exercise performance due to decreased cardiac output, 

increased ventilation, and muscle fatigue [56] [57]. A decrease in the ability to perform exercise 

countermeasures early in flight may have negative consequences, as a large portion of the 

strength loss and muscle atrophy observed in ISS crewmembers may occur during the first few 

weeks in microgravity. Chronic exposure (> 3 weeks) to the 8/32 environment may also magnify 

microgravity-induced changes in muscle and exercise performance. For example, exposure to 

moderate altitude accelerates muscle atrophy [58] and the transition from the slow-to-fast-twitch 

fiber type [59] decrease mitochondrial function and aerobic metabolism [60] and increase muscle 

fatigability [61]. Ultimately, there is a 0.5% reduction in aerobic power output per 100 m (328 ft) 

of elevation [61] [62] [63] [64]. Moreover, similar to microgravity, individuals with higher 

aerobic capacity are more affected by hypoxic exposure [65], and there are gender differences in 

performance [66] [67] [68] as well. 
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4.5.3 Cardiovascular System Performance and Spaceflight 
Alterations in cardiovascular function have been reported following both acute and chronic 

exposure to spaceflight and are thought to be secondary to circulatory unloading mediated by a 

central redistribution of fluid and an accompanied reduction in plasma volume. It is now 

accepted that these adjustments contribute to the increased risk of orthostatic intolerance and 

underlie the reduction in exercise capacity experienced by some astronauts. More recent studies 

using both ultrasound and cardiac magnetic resonance imaging have elucidated a number of 

structural and functional changes, including left ventricular diastolic dysfunction, cardiac atrophy 

/ remodeling (an average decrease of approximately 1 gram per week), and vascular / endothelial 

dysfunction, which is differentially altered between cerebral and peripheral vascular beds. 

 

4.5.4 Cardiovascular System Performance and Hypoxia 
The cardiovascular control systems are keenly sensitive to changes in both O2 and CO2. While 

there is no literature on the specific environment in question (8/32) combined with a stressor 

such as spaceflight, there is a relatively rich literature base on the effects of hypoxia (including 

relatively mild hypoxia) here on Earth. A preliminary review of this literature revealed that 

chronic exposure to extreme HH, such as that experienced at altitudes at or above 3,400 m 

(11,154 ft), may impart protective adaptive effects on the cardiovascular system. On the other 

hand, acute or intermittent exposure to such conditions, even at altitudes that provide only 

modest hypoxia, may impart maladaptive responses. Specifically, Holloway, et al. demonstrated 

reduced left ventricular mass (approximately 11%) and impaired diastolic function in sea level-

dwelling subjects after only a short and gradual ascent to the 5,300-m (17,388-ft) Mt. Everest 

Base Camp [69]. It was postulated that such changes were due to alterations in myocardial 

energetics, particularly reduced levels of phosphocreatine and adenosine triphosphate. Such 

results confirm and provide a mechanistic insight into an earlier finding by Kjaergaard and 

colleagues, who demonstrated that cardiovascular function was depressed even after only 18 

hours of exposure to simulated hypoxia comparable to living at 4,000 m (13,123 ft) [70]. Papers 

by Nishimura [71] and Iwasaki [72] suggest that a relative altitude as low as 2,000 m (6,562 ft) is 

sufficient to alter vascular function in the brain in as little as 5 hours. 

 

It is likely that many of these effects are mediated, at least in part, by hypoxia-inducible factor 1 

(HIF-1) [73] [74]. There is also evidence that HIF-1 interacts with reactive O2 species to form a 

positive feedback loop, thus exacerbating any oxidative stress already present during spaceflight. 

 

4.5.5 Exercise and Cardiovascular Performance Conclusion 
Acute and chronic exposure to the 8.2/34 environment may exacerbate microgravity-induced 

decrements in muscle and exercise performance. The relative impact of these changes is highly 

duration-dependent. Acute studies are needed to compare muscle and cardiovascular 

performance at 8.2/34, probably using NH simulations to determine pre- and in-flight exercise 

prescriptions. Long-duration 8.2/34 exposure would prompt the need for additional adaptation 

studies. 

 

An Exploration equivalent to the ISS Crew Health Care System (CHeCS) will consist of 

countermeasures, environmental health monitoring, and health maintenance. The impact of an 

8.2/34 environment will have to be evaluated in terms of each of these elements. 
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The Countermeasures System (CMS) will provide aerobic and anaerobic exercise capabilities for 

crewmembers to minimize cardiovascular deconditioning, bone loss, and muscle atrophy due to 

disuse in microgravity. In general, the current CMS on the ISS is believed to be adequate for 

maintaining aerobic fitness and bone mineral density (although preservation of bone architecture 

is still being debated). However, CMS hardware may be reduced in exploration missions given a 

smaller habitable volume compared with the ISS. A specific concern associated with the 8.2/34 

environment is that air pressure-dependent hardware, such as the ARED, would work less 

effectively, requiring more mass and/or more frequent cylinder evacuations to maintain the same 

range of resistance. 

 

Exercise protocols of lower intensity or shorter duration [44] have been proposed for an 8/32 

environment to preserve consumables and minimize hardware cycling, while reducing the risk of 

AMS, as exercise has been associated with more severe AMS symptoms at simulated altitude 

[46]. However, these potential benefits of reduced exercise protocols must be weighed against 

the risks of cardiovascular and musculoskeletal deconditioning in terms of ability to perform 

strenuous mission tasks (e.g., EVA) and long-term health consequences. 

 

4.6 Immune System Function 
We know that reactivation of latent herpes viruses occurs during short-duration spaceflights [75]. 

Recent data from the ISS indicate that in-flight dysregulation of the immune system persists for 

the duration of a 6-month mission [76]. Persistent immune dysregulation during exploration 

missions could increase certain health risks to astronauts, including infectious disease, allergy 

and hypersensitivities, malignancies, autoimmune manifestations, and the consequences of 

continued viral reactivation [77]. 

 

There is ample terrestrial evidence demonstrating that hypoxia may also adversely influence the 

immune system. We also know that T cell function is impaired during hypoxic stress [78] [79] 

and that hypoxia promotes the accumulation of extracellular adenosine as a result of enhanced 

purine nucleotide degradation from adenosine tri- and diphosphate (ATP, ADP). Binding of 

adenosine to the cAMP-elevating Gs protein-coupled A2 receptors results in an inhibition of 

effector functions of T cells and myeloid cells and includes the inhibition of expansion and 

secretion of cytotoxic molecules and cytokines [80]. This suppresses the immune system and 

thus may render the body more susceptible to some of the adverse health consequences described 

above.  

 

The combined immune-suppressive effects of spaceflight environmental factors and even a 

short-term and rather mild hypoxic atmosphere is therefore of much concern. The spaceflight 

effects per se might be controllable even during long-term missions, but the additive and/or 

synergistic effects of an 8.2/34 hypoxic environment might further dysregulate immune 

parameters, thus rendering the consequences of immune deficiencies less controllable. Thus, 

forward work investigating the degree to which an additive and/or synergistic effect of the well-

known spaceflight environmental factors and 8.2/34 hypoxia occurs is highly recommended 

before planning for long-duration deep space missions. 
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4.7 Oxidative Stress and Damage 
There is evidence that spaceflight-induced oxidative stress and damage (OSaD) is a component 

of the following spaceflight-related effects: immune manifestations, decreases in bone and 

muscle strength, and development of the VIIP syndrome during spaceflight [81] [82] [83] [84] 

[85] [86] [87] [88] [89]. OSaD is the result of organic and systemic dysregulation of the free 

radical normalization and scavenging process and is also the cause of many different 

manifestations of disease, including atherosclerosis [90] [91] [92]. Therefore, during long-

duration missions into deep space, OSaD could likely constitute an important mechanism for 

development of cardiac disease [90] [93] [91] [94]. 

 

Changing the environment during spaceflight to an 8/32/34 environment will lead to mild 

hypoxia, which is known to further promote OSaD [95] [96]. The combination of spaceflight 

(radiation and weightlessness) and hypoxia will be a hazard that will likely induce augmented 

synergistic and additive OSaD effects, thereby rendering immune dysfunction, bone 

demineralization, muscle degradation, and the VIIP syndrome less controllable – even with use 

of the current countermeasures. Therefore, OSaD research is warranted to determine whether it is 

safe for the astronauts to change the vehicle environment to a lower O2 partial pressure during 

spaceflight [97] [98] [88]. Such research should be combined with the suggested research 

scenarios within the immune discipline [99]. 

 

Given that the main motivation behind a reduced environment such as 8.2/34 is to facilitate 

frequent EVAs, several general concerns regarding the performance of frequent EVAs are 

discussed below. 

  

First, repeated cycling between suit pressure and habitable volume pressure could have 

detrimental effects on the crew. Intermittent hypoxia, defined as repeated episodes of hypoxia 

interspersed with episodes of normoxia, has been studied to enhance exercise performance in 

athletes, as the so-called “live high and train low” method can stimulate erythropoietin and red 

blood cell production and increase ventilation [100]. However, intermittent induced cyclic 

hypoxia is also associated with increased arterial blood pressure through activation of the renin-

angiotensin system in healthy subjects [101] and enhanced sympathetic and blood pressure 

responses to acute hypoxia and hypercapnia [100]. Cumulative exposure to intermittent hypoxia 

may yield progressive brain injury and subsequent neurological impairment due to metabolic 

stresses and reactive free radicals during hypoxia [100]. Intermittent hypoxia appears to elicit the 

same ventilatory changes to hypoxia as chronic hypoxia and also changes the surface receptors 

on red blood cells, which may cause long-term changes in VO2 max [102]. Furthermore, patients 

with obstructive sleep apnea, who serve as a model for chronic intermittent hypoxia, have a high 

risk of cardiovascular disease, increased levels of inflammatory markers, oxidative stress, 

coagulation, and thrombosis [103] [104].  

 

4.8 Sleep 
The introduction of an 8.2/34 environment may have implications for sleep in microgravity. In 

particular, difficulties in sleep are anticipated in hypoxic environments during the acclimatization 

phase.  
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4.8.1 Sleep during Spaceflight 
Sleep deprivation is associated with degraded performance of neurobehavioral tasks, as well as 

decrements in health and well-being; thus, any stressor that has the potential to affect the quality 

of sleep during a mission could be detrimental to the astronaut. Studies have shown that sleep is 

reduced to an average nightly duration of 6 hours in short-duration missions (i.e., Space Shuttle), 

despite schedule requirements that accommodate 8 hours of sleep per night [105] [106]. Duration 

may not be the only aspect of sleep that is currently affected in spaceflight. Shuttle astronauts 

reported poor sleep quality on orbit [107]. Few studies have objectively looked at sleep structure 

in space, but those that have evaluated sleep stages have found changes, although these studies 

included only a small number of participants [106] [108]. Ground research demonstrates that 

changes in sleep structure are associated with health and performance decrements [106] [108] 

[109] [110]. Reduced sleep and possibly altered sleep structure already pose implications for 

cognition, alertness, and performance on critical tasks.  

 

4.8.2 Sleep and Hypoxia 
Terrestrial studies indicate that hypoxic environments can yield similar detriments to sleep as 

those that have been seen in the spaceflight environment, particularly field studies that include 

high workloads and increased exertion. Thus, the combination of adding a hypoxic environment 

to existing stressors associated with sleep in space could potentially exacerbate these negative 

effects. 

The lowest altitude at which sleep and/or post-sleep performance are affected is not definitively 

known. Decreased quality of sleep has been reported after acute ascent to altitudes of North 

American ski resorts (2,000 to 3,000 m) (6,561 to 9,843 ft) and higher. Changes in sleep 

architecture include a shift toward lighter sleep stages, with marked decrements in slow-wave 

sleep and variable decreases in rapid-eye-movement sleep [111]. Accordingly, the sleep quality 

at these altitudes was perceived as poor, with the sensation of occasional awakenings, a sense of 

suffocation caused by periodic breathing relieved by a few deep breaths, and resumption of 

sleep.  

 

Weil proposed that respiratory periodicity (arousals) at altitude results from alternating 

respiratory stimulation by hypoxia and subsequent inhibition by hyperventilation-induced 

hypocapnia [111]. Despite approximately the same sleep duration, upon arising from sleep, 

subjects reported impressions of greatly abbreviated and restless sleep. Additionally, during 

wakefulness, subjects experienced drowsiness [111]. This relationship may need further 

evaluation because CO2 levels are several times greater on the ISS than on Earth [11]. 

 

Studies in simulated environments, however, revealed less conclusive effects on sleep and 

related outcomes. Muhm, et al. studied post-sleep neurobehavioral performance decrements at a 

simulated altitude of 2,438 m (8,000 ft) on O2 saturation, heart rate, sleep duration, sleep quality, 

post-sleep neurobehavioral performance, and mood [112]. Results showed that SaO2 before sleep 

was significantly lower at altitude than at sea level. During sleep, SpO2 decreased further at both 

altitude and ground. SaO2 was below 90% during 44.4% of the time at altitude and 0.1% of the 

time at sea level. Subjects participated in three 18-hour sessions, and sleep was more disturbed in 

the first study session than in subsequent sessions (potentially an argument for pre-adaptation 

before flight), and older subjects had more disturbed sleep. Despite these findings, objective and 
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subjective measurements of sleep duration and quality did not differ significantly with altitude or 

post-sleep neurobehavioral performance and mood.  

 

Thomas, et al. found that sleep at a simulated altitude of 3,962 m (13,000 ft) was not associated 

with decrements in working memory or simple reaction time in healthy non-smoking men and 

women [113]. Weiss, et al. found no difference after hypoxia in sleepiness, encoding, verbal 

learning, objective vigilance, attention, or working memory at the same altitude with intermittent 

9-hour exposures for 28 consecutive nights [114]. While these results were unexpected, they 

highlight the limitations of simulated studies, possibly because they lack the conditions of high 

workload and exertion found in field studies and the spaceflight environment.  

 

Evidence indicates that sleep is significantly reduced during the time before an EVA [105]. 

Before an EVA, it is common for crewmembers to be too “wired” to sleep [107]. General 

practice has been not to schedule 2 consecutive days of EVA unless resources are limited. The 

proposed mission scenario with an EVA every day or every other day can result in a heightened 

stress response, reduced sleep, and/or interrupted sleep in addition to the already reduced sleep in 

microgravity. This could have implications for, e.g., task performance, memory, and cognition. 

 

4.9 Decompression Sickness 
Mitigation of DCS is one of the primary reasons for the selection of a non-sea-level environment. 

When coupling the 8.2/34 Exploration Atmosphere with a variable-pressure EVA suit and a 

highly efficient suit donning/doffing technology such as the Multi Mission Space Exploration 

Vehicle (MMSEV) suitports, crew time and consumable use are efficiently maximized [115]. 

To date, all predictions of the time and duration needed to effectively mitigate DCS using the 

8.2/34 environment have been derived from modeling data. Prior to use in-flight, the O2 PB 

requirements for transitioning between the 8.2/34 environment and a 4.3 psia EVA suit will need 

to be validated through a ground-based chamber test.  

This test will need to validate the requirements for the following: 

1. Transitioning from 14.7/21 to 8.2/34 without any risk of DCS 

2. Duration needed to saturate at 8.2/34 prior to the first EVA or additional PB requirements 

for the first EVA 

3. Nominal EVA PB requirements once saturated at 8.2/34 

4.10 Stand-Alone Hypobaric Effects 
Although the majority of human concerns regarding the 8.2/34 environment are related to the 

mild hypoxia, there are specific concerns related just to operating at a lower-pressure 

environment. For instance, reduction in pressure alone will account for an increased insensible 

water loss that will need to be replaced with additional drinking water [116]. This increased 

water loss will also need to be considered by the ECLSS team. 

4.10.1 Hypobaric Effects on Medical Equipment 
The Health Maintenance System (HMS) will enable nominal and contingency evaluation of crew 

health and provide treatment for a variety of illnesses and injuries. All medical hardware will 

also need to be certified to operate in an 8.2/34 environment. Additionally, air-dependent 
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diagnostic hardware may have to be modified (e.g., blood pressure cuffs) or substituted with 

devices that are not air-dependent (e.g., air-puff tonometer). In terms of therapeutics, 

medications may or may not be more stable in a reduced O2 environment in combination with the 

higher space radiation levels. Capabilities for supplemental O2 and mechanical ventilation will 

be needed to treat a subset of conditions on the Exploration Medical Conditions List, and both 

will have to be compatible with the spacecraft atmosphere. A defibrillator to treat sudden cardiac 

arrest or arrhythmia will also have to pose minimal fire risk. 

 

The purpose of the Space Medicine Exploration Condition List (SMEMCL; JSC-65722) is to 

serve as an evidence-based foundation for determining which medical conditions could affect a 

crewmember during a given mission profile, which of those conditions would be of concern and 

require treatment, and the conditions for which a gap in knowledge or technology development 

exists. This information will be used to focus research efforts and technology development. 

Atmospheric changes from sea level to 8.2/34 will change the incidence of diseases currently 

being researched, such as AMS, and the treatment of diseases not directly induced by hypoxia, 

such as a pneumothorax, which requires increased O2 for treatment.  

 

The Integrated Medical Model is a stochastic model that uses Monte Carlo methodology to 

simulate medical events and estimate the impact of these medical events for a given DRM. 

Outcomes include Crew Health Index (CHI), probability of evacuation (EVAC), and probability 

of loss of crew life (LOCL). For each DRM, 20,000 trials are simulated and probability 

distributions for CHI, EVAC, and LOCL are determined. Thus, a change in cabin pressure will 

directly affect diseases such as AMS and DCS, as well as affect the consequence of O2-

dependent diseases such as respiratory infection and anemia. 

 

Treatment of these O2-dependent diseases requires directed delivery of concentrated O2. This 

capability may be impaired by a lower ambient cabin pressure and higher O2 concentration.  

 

4.10.2 Hypobaric Effects on Food Preparation 
 

In the currently used prepackaged food system, oxygen transfer through food packaging may 

cause oxidation, resulting in quality loss, including nutrient breakdown and color and flavor 

changes. There is actually a potential advantage of the 8.2/34 environment because there would 

be less O2 to deteriorate the food. Once technology gap is the degree to which the 8.2/34 

environment affects product quality and whether the packaging barrier requirements need to be 

significantly modified. 

 

On a surface mission, a partially bioregenerative or bulk food system may be implemented, 

which would include some food processing and preparation. The 8.2/34 environment can affect 

operations during an exploration mission when food preparation is conducted. At reduced 

pressure conditions, water boils at much lower temperatures, which slows the heat transfer in 

food and water.  At this lower pressure, the boiling temperature for water is 84°C (183°F). To 

create safe and acceptable food, cooking and processing of food are dependent on 

time/temperature combinations. Additionally, certain resulting textures come from cooking. For 

example, if the starch in rice is not gelatinized at 83°C (181°F), the rubbery texture is replaced 

by dry, granular textures. The Advanced Food Technology (AFT) team has not conducted any 
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tests at 8.2 psi, so there are no data on what would be required under these unique conditions.  A 

solution may be to use a pressure cooker, but that requires extra mass and volume and may not 

be the answer for all types of “cooking.” Understanding the physical changes in the environment 

and the impact on food preparation and processing is critical to ensure that food remains 

acceptable to support consistent caloric and nutritional intake and to ensure the food remains 

safe. There is a gap in knowledge regarding acceptability of the food and the microbial load 

throughout food processing in these conditions, which needs to be filled to quantify the risk of 

under-consumption due to unacceptable food or of foodborne illness due to unsafe food. In the 

event that knowledge in this area identifies a risk in food safety or acceptability, there would be 

an associated technology gap formed to reduce the risk to acceptable levels.  

 

The combination of hypogravity and lower pressure may improve colloidal stability, but mixing, 

fluid transport, boiling, condensation, and natural convection are all processes likely to be 

negatively affected by the reduction in gravity. Thus, any equipment evaluation must consider 

whether the equipment depends on physical phenomena that fail to exist in a hypogravity or 

hypobaric environment.  

5 Risk in Context of Exploration Mission Operational 

Scenarios    
As of August 2013, there have been no reported cases of DCS during Shuttle and ISS missions 

due to adherence to PB protocols that have been rigorously developed and validated specific to 

Shuttle and ISS operational environments and EVA scenarios. Although DCS risk has been 

greatly reduced through these PB protocols, it is at the expense of significant crew time and 

consumable usage. This need for significant crew time and consumables will not meet the needs 

of an exploration program with robust EVA plans. To enable a robust EVA plan, an exploration 

atmosphere of 8.2 psia with 34% O2 has been proposed. 

5.1 Transitioning Guidelines between different Atmospheres will 

Need to be Developed 

This section summarizes some suggested mitigation strategies that will help alleviate symptoms 

or prepare the astronaut to occupy the 8.2/34 spaceflight environment. Gradual decompression 

from 14.7 psia to 8.2 psia will diminish many of the acute symptoms, such as AMS and hypoxic-

related sleep problems. Supplemental O2 should be available during vehicle decompressions and 

throughout the length of the mission in case certain crewmembers do not adapt as readily as 

others. This supplemental O2 will also be used as DCS prevention during this depressurization. 

 

An exact understanding of atmospheric and tissue inert gas exchange does not yet exist to 

precisely define when the inert gas tension in tissues comes into a new equilibrium after the 

breathing environment has changed. When a significant pressure reduction is used to reduce the 

tissue N2 tension, there is an additional complication of creating “silent bubbles” in the body that 

then hinder normal tissue N2 exchange with the atmosphere. In the case of the 8.2/34 

environment, the pressure reduction from 14.7 psia to 8.2 psia is conducted in tandem with an 

increase in FIO2 from 21% to 34%. Both of these changes reduce the ambient ppN2 from 11.6 
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psia to 5.4 psia (600 to 280 mmHg), but there is some uncertainty regarding the time at which the 

tissue N2 tension comes into a new equilibrium. If we accept that a 360-minute theoretical half-

time tissue compartment is key to our DCS applications, basic exponential decay principles 

indicate the need for four half-times (24 hr) to account for 94% of the difference between the 

initial and final tissue N2 tension. Six half-times (36 hr) brings the difference to 98%, and by 8 

half times (48 hr), the difference is negligible.  

 

Based on research experience from the 10.2 psia staged denitrogenation protocol in the Shuttle 

program, it was clear that a direct decompression to 10.2 psia created “silent bubbles” that 

manifested 12 to 16 hours later as early-onset venous gas emboli (VGE) and early-onset Type II 

DCS symptoms while at the EVA pressure of 4.3 psia. A 60-minute PB was instituted such that 

the first decompression to 10.2 psia would not theoretically supersaturate the 360-minute half-

time compartment; the computed tissue ratio was 1.0. This removed the early-onset VGE and 

DCS in subsequent tests of the staged protocol [117]. In keeping with this same philosophy, 

preliminary analysis indicates the need to implement a 180-minute PB before depressurization 

from 14.7 to 8.2 psia to keep the computed tissue ratio at 1.0. Because 100% O2 is used for the 

180-minute PB, the tissue N2 tension is lower than it would be if the astronaut was just exposed 

for 180 minutes to the 8.2/34 environment. Thus, the computed time required to achieve 

equilibrium with the 8.2/34 environment is reduced from 48 to 45 hours. If an EVA is performed 

before tissue N2 equilibration at 8.2/34, additional PB beyond the expected 15 minutes would be 

needed, possibly as much as 30 minutes for the first EVA.  

 

Crewmembers will need to be trained to understand the symptoms of hypoxia. When the 

application of the 8.2/34 environment is to be employed early in the mission phase, the 

crewmembers will have to adapt acutely to the spaceflight and hypoxic environment at the same 

time. Critical tasks should be avoided, and workload stress should remain low during the 

atmospheric transition period.  

 

Although hypoxic pre-conditioning is not a mitigation strategy for DCS, it is a technique that 

uses bouts of hypoxic exposure to prevent ischemia. This may not directly apply to the astronaut 

in the spaceflight environment, but the effect of pre-exposure to the hypoxic stimulus and the 

way in which it prepares people to tolerate the hypoxic environment on subsequent trials have 

also been discussed. The degree of hypoxia, duration of exposure, and timing of the exposure 

would need further literature review before implementation of the technique in the crew training 

and mission preparation phases.  
 

5.2 Exploration Missions involve Increased EVA Capability that is 

Required at Very Different Points in Different Design Reference 

Missions 

The planned scenarios currently being considered for future missions using the 8.2/34 

environment involve a high number of EVAs. Although all of these scenarios include a phase 

requiring numerous EVAs, this phase may take place at very different points in a mission. 

Crewmembers can reach the lunar surface or a Cis-Lunar location within a few days. On the 

other hand, it will take several months to reach a NEA or Mars. Therefore, we have to consider 
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the operational pace and known physiological changes as we investigate the potential impacts of 

the inclusion of the 8.2/34 environment.  

 

In the lunar and Cis-Lunar cases, spaceflight data from shuttle missions should be leveraged. In 

these cases, the transition to the 8.2/34 environment would superimpose adjustments to the 

hypobaric hypoxic environment with adjustments associated with adaptation to microgravity. 

The concern is that the combination of these adjustments in addition to a EVA-heavy mission 

profile may degrade the health and performance of astronauts, who must maintain a high level of 

proficiency to accomplish mission goals [44]. The first 2 weeks of a spaceflight is a period of 

dynamic physiological changes in the crewmember. Primarily, the physiological adaptation to 

the new spaceflight environment includes: cephalad fluid shift, neurovestibular adaptation, 

susceptibility to space motion sickness, and changes in spatial orientation. These changes result 

in physical symptoms such as increased fatigue, headaches, reduced sleep, lack of appetite, and 

back pain, all of which can negatively impact mood and behavior. Cognitive processes, such as 

focus and attention, memory recall, problem solving, and executive function, may affect mission 

operations, which include highly technical and complex procedures [118].  

 

Space Shuttle missions, which typically lasted approximately 2 weeks, were regarded as high-

workload and fast-paced missions, with little to no time available for “winding down” [107]. 

Crewmembers reported forgoing to eat and sleep to complete mission objectives [119] [107]. 

Accordingly, objective data from spaceflight indicate that shuttle astronauts slept an average of 

approximately 6 hours per night [105]. The increase in stress response and sleep deprivation 

increases the likelihood of errors. Therefore, effects of the slightly hypoxic environment must be 

considered with these operational data in mind. It could be expected that more severe detriments 

would result from the inclusion of a hypoxic environment. 

 

In the NEA and Mars cases, spaceflight data from ISS missions will be more appropriate for 

analysis. It will take up to 6 months to reach these locations, which nicely parallels the current 

length of an ISS mission. At the end of a 6-month ISS rotation, crewmembers are acclimatized to 

the spaceflight microgravity environment; therefore, the problem of complicating the adaptation 

to spaceflight with the 8.2/34 environment is avoided. However, the long-term issues associated 

with spaceflight will pose different challenges. Crewmembers may have signs or symptoms of 

the VIIP syndrome. They may have decrements in cardiovascular, muscular, and aerobic 

capacity if the current ISS countermeasure effectiveness cannot be maintained during transit. 

Transitioning to the 8.2/34 environment in the midst of returning to a gravity environment (3/8-g 

on Mars) and adding an EVA-heavy phase to the mission after months in space is a scenario in 

which we have no operational experience. Expected problems are less likely going to stem from 

acute overload and are more likely to derive from the combination of negative chronic 

spaceflight adaptation, which may worsen with exposure to a mildly hypoxic environment 

coupled with an increased EVA frequency. 

 

5.3 Exploration Atmosphere Enables New EVA Architecture 

While it may be feasible to enable the means to transition into the EVA environment with 

significantly less overhead, there remain many unknown questions related to the risk of 

crewmember injury and performance during an EVA. To date, there have been relatively few 
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EVAs performed during any one NASA mission across any flight program. The largest number 

of EVAs during any single mission has been 10. STS-61, 82, 109, and 125 each had 10 EVAs 

over 5 consecutive days spread across 4 crewmembers using the shuttle staged protocol. STS-

123 included 10 EVAs spread across 10 days and 4 crewmembers, and STS-127 had 10 EVAs 

spread across 10 days and 4 crewmembers. In each of these specific shuttle missions, no EVA 

crewmember completed more than 3 EVAs. 

 

The greatest number of EVAs for any individual crewmember during a short-term mission is 4. 

During STS-116, Robert Curbeam completed 4 EVAs over 7 days, with a day of recovery 

between each, and Scott Parazynski completed 4 EVAs over 9 days during STS-120. With regard 

to long-duration missions, Daniel Tani and Peggy Whitson completed 5 EVAs each from 11/9/07 

to 1/30/08 during ISS Increment 16, which is the most for any crewmember during any NASA 

mission. During Apollo 15, 16, and 17, each EVA crewmember performed 3 EVAs on 3 

consecutive days, which is the highest EVA density within NASA. 

 

There is no flight experience that replicates the types of scenarios being discussed for 

Exploration missions, with possibilities of multiple EVAs per day, tens to hundreds of EVAs 

over a mission, and single-person EVAs. All data available on crewmember performance and 

injury rates are limited to the previously described duration exposures as well as the numerous 

shorter exposures. Historically, EVA has been treated as a pinnacle career event, but the newer 

EVA architectures employing numerous EVAs may need to consider EVAs as routine mission 

events. Therefore, injury rates and performance limitations that have been tolerated to date may 

not be acceptable for future Exploration missions.  

 

There are also many technical questions to address. Until the recent ISS era, in which EVA suits 

are maintained on orbit and sized for each crewmember, the EVA suits were used for a specific 

mission and then returned to the ground with no required long-term maintenance in orbit. 

 

Currently, EVAs are some of the most grueling and physically and mentally demanding activities 

required during a space mission. On EVA day, the schedule only accommodates time for EVA, 

and the EVA astronaut is not required to exercise or complete other tasks. During EVAs, the 

crew is especially vulnerable to the space environment. A dramatic shift in the perception of the 

mission will occur during an EVA-heavy mission, where astronauts will routinely expose 

themselves to an especially harsh and physically and mentally stressful environment. Increased 

training, mental preparation, and safety vigilance will be necessary for such missions and may 

have implications for selection as well. 

 

5.4 No Exploration Atmosphere Means Longer Denitrogenation 

Protocols and Higher Consumable Usage 

Current and future spacesuit functionality requires decompression prior to EVA. Without the use 

of a staged denitrogenation protocol, such as that proposed with the 8.2/34 Exploration 

Atmosphere, or a zero-PB EVA suit operating at higher pressures, denitrogenation protocols will 

remain lengthy. Much research could be performed to reduce the length of existing ISS PB 

protocols. Understanding how a break in PB affects P(DCS) is a critical step. Additionally, 

understanding the differences in VGE, N2 washout, and micronuclei generation in the space 
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flight environment would be of great benefit. Ultimately, an operational mitigation strategy that 

relies on a long O2 PB as the primary strategy will result in longer, more complicated EVA 

preparation timelines and higher consumable use, as well as reduced flexibility and capabilities 

of Exploration EVAs.  

An example of the consumable savings available through use of the 8.2/34 Exploration 

Atmosphere is the reduction in the suit purge time by 6 min per EVA, achieving 80% O2 in the 

spacesuit rather than 95%. This modestly increases the P(DCS) risk, but the calculated savings of 

0.48 lb of gas and 6 minutes per person per EVA corresponds to more than 31 hours of crew time 

and 1800 lb of gas and tankage under the Constellation lunar architecture [115]. 

Of the available strategies to significantly reduce denitrogenation time while maintaining 

acceptable DCS risk, the Exploration Atmosphere strategy is more promising than either a high-

pressure EVA suit or an enhanced version of current ISS PB protocols.  

 

5.5 Carbon Dioxide Levels May Add Additional Negative Effects 
 

If exploration crews are exposed to similar CO2 levels as those on the ISS, the effect of 

hypercapnia combined with hypobaric hypoxia in hypogravity will also need to be researched. 

CO2 alone has widespread effects on human physiology, including: 

 Altering O2 binding: CO2 causes a rightward shift of the oxyhemoglobin saturation curve, 

such that at a given ppO2, less O2 is bound to hemoglobin, resulting in worsened hypoxia, 

especially during exercise or if a patient is in shock when O2 demand is increased.  

 Stimulating ventilatory response: CO2 not only increases minute volume and respiratory 

rate in the short term, but it also appears to alter the pH and CO2-dependent set point for 

respiratory drive after chronic exposure to CO2 [12].  

 Cerebral vasodilation: CO2 is a potent cerebral vasodilator and is linked to elevated 

intracranial pressure. Silwka [120] measured cerebral blood flow (CBF) in the middle 

cerebral artery in healthy subjects exposed to 0.7% and 1.2% CO2 environments for more 

than 23 days and found that CBF increased by as much as 35%; moreover, CBF did not 

return to baseline post-exposure. This persistence post-exposure is similar to the 

persistence of elevated intracranial pressure in some of the symptomatic astronauts who 

were subsequently diagnosed with VIIP, suggesting that CO2 may play a contributory or 

exacerbating role in the VIIP syndrome in long-duration spaceflight. 

 Altered bone homeostasis: CO2 exposure results in respiratory acidosis that appears to be 

compensated by the kidneys at higher levels (> 3% CO2) and by the bone at lower levels 

(0.5 to 1.5% CO2) [121]. The bone, which contains a large reserve of the body’s 

bicarbonate and calcium carbonate, serves as a buffer for acidosis; chronic acidosis can 

result in the release of calcium carbonate and bone breakdown [12]. In addition, chronic 

acidosis is associated with cell-mediated bone resorption and increased urinary calcium 

excretion due to stimulated osteoclastic activity and suppressed osteoblastic activity [122] 

[123] [124]. Thus, there is concern about chronic hypercapnia exacerbating an astronaut’s 

risk of developing kidney stones. 

 Behavioral health and performance: Anecdotally, ISS crewmembers have been noted by 

ground controllers to be more irritable or lethargic when they are gathered in a small 
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module for public affairs events, presumably due to local accumulation of CO2. 

Terrestrially, mild visuomotor impairment has been observed in subjects exposed to 1.2% 

CO2 [125]. Additionally, there appears to be a dose-response relationship between CO2 

level and symptoms such as nausea, dizziness, derealization, fear of losing control, and 

paresthesia [126]. 

 

5.6 All Assumptions Regarding use of the 8.2/34 Environment 

Assume N2 as the Primary Inert Gas 
 

A significant consideration for Mars exploration is the cost required to provide life support, 

particularly the atmospheric gases in the habitat, rover vehicle, and space suit. The 95.7% CO2 in 

the Martian atmosphere can be converted to O2 or even fuel for propulsion. The remaining major 

gas constituents are 2.7% N2 and 1.6% Argon (Ar). These inert gases, which can either be used 

at their existing ratio or separated and later blended to any desired concentration, must be 

considered as the alternative to transporting N2 from Earth [127]. 

 

 

An assumption is that an automated system could be sent to Mars before a manned flight to 

extract and store the thin Martian atmosphere, which exerts a total pressure of less than 5 mmHg.  

The system elements include, e.g., a vacuum pump, power supply, storage container, and control 

system.  From an engineering standpoint, the preference would be to not separate the N2 and Ar 

into different containers, as this process requires too much energy and technology. Therefore, the 

breathing atmosphere would include N2 and Ar at the 1.68 ratio already present in the Martian 

atmosphere, supplemented with a sufficient amount of O2 to achieve an acceptable total pressure. 

 

Given a N2 to Ar concentration ratio of 1.68 for the inert gas component of the Martian 

atmosphere, 2.7% N2 / 1.6% Ar = 1.68, the ratio of N2 and Ar pressures in a habitat that also 

results in a 1.68 concentration ratio is computed as: 

 

N2 pressure = (tigp × 1.68) / 2.68,         Eq. 1 

  where tigp is the total inert gas pressure. 

  

Consider the case of the current 8.2 psia habitat pressure with 34% O2 and 66% N2. The ambient 

ppO2 is 2.79 psia (0.34 × 8.2 psia). An alternative to this atmosphere is one with a binary inert 

gas composition. Using the Martian inert gas as is, Eq. 1 computes the required ppN2 in a habitat 

at 8.2 psia with 34% O2 to achieve the 1.68 N2-to-Ar ratio. The tigp in Eq. 1 is 5.412 psia (0.66 × 

8.2 psia). Solving Eq. 1 for N2 pressure yields 3.393 psia. The balance of inert gas is Ar at a 

ppAr of 2.019 psia. Converting these pressures to concentrations yields 34% O2, 41.3% N2, and 

24.6% Ar. 

  

An 8.2 psia atmosphere that contains aproximately 25% Ar is problematic if EVAs are 

performed at reduced pressure [128]. This potentially cost-effective in-situ resource approach 

would drive a risky and complicated EVA program in terms of managing DCS risk. This 

conclusion needs to be challenged with empirical data from well-designed human trials. 
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There are other alternatives to consider.  Nitrogen and Ar can be separated and stored in different 

containers to be blended to any atmospheric specification. The technical feasibility of this 

approach needs to be demonstrated and be cost-effective compared with just providing N2 from 

Earth. Finally, the N2 and Ar from the Martian atmosphere could be used during the return trip to 

Earth, as EVAs on the return trip would likely be infrequent. 

6 Gaps    
We have described much of the evidence related to the application of mild hypobaric hypoxia in 

space. The gaps are described in the following sub-sections and form the focus of the future 

NASA Human Research Program Exploration Atmosphere research efforts. 

Currently, there are few pre, in-, and post-flight data to characterize this risk. Below is a list of 

related unanswered issues that will help to define the VIIP syndrome and characterize the risk for 

exploration-class missions. 

 ExAt1 - We do not know how mild hypobaric hypoxia in combination with other 

spaceflight environmental factors will impact the brain (e.g., VIIP syndrome, 

sensorimotor performance, and AMS risk). 

 ExAt2 - We do not know how mild hypobaric hypoxia in combination with other 

spaceflight environmental factors will impact exercise countermeasures. 

 ExAt3 - We do not know how mild hypobaric hypoxia in combination with other 

spaceflight environmental factors will impact the immune system and oxidative stress 

and damage (OSaD). 

 ExAt4 - We do not know how mild hypobaric hypoxia in combination with other 

spaceflight environmental factors will impact sleep. 

 ExAt5 - We do not know the O2 prebreathe requirements for DCS mitigation associated 

with the 8.3/34 environment (Shared Gap with DCS5). 

 ExAt6 - We do not know how a hypobaric environment will affect medical equipment. 

 ExAt7 - We do not know how a hypobaric environment will affect food preparation. 

7 Conclusion 
EVA is at the core of a manned space exploration program. With the 8.2/34 environment, NASA 

gains the capability for efficient EVA with low DCS risk, but it also accrues the human health 

and performance risks associated with the addition of hypobaric hypoxia to the spaceflight 

environment. These risks include increased intracranial pressure, visual impairment, 

sensorimotor dysfunction, immune dysregulation, and oxidative damage. Forward work also 

includes validating the DCS mitigation strategy, ensuring quality sleep, identifying/treating 

AMS, developing new exercise protocols and possibly hardware, effectively preparing food at 

8.2 psia, and ensuring operation of medical equipment at 8.2/34. 
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9 List of acronyms 
1-G   Earth-normal gravity 

10.2 psia  cabin atmosphere used during Shuttle EVA operations 

14.7/21  normal sea-level atmosphere, 14.7 psia, 21% oxygen, nitrogen balance 

8/32% 2006 EAWG recommendation for future exploration atmosphere, 8 psia 

pressure, 32% oxygen, balance nitrogen 

8.2/34% Current exploration atmosphere, 8.2 psia pressure, 34% oxygen, nitrogen 

balance 

ADP adenosine diphosphate 

AMS   acute mountain sickness 

Ar   argon 

ARED   Advanced Resistive Exercise Device 

ASD    atrial septal defect 

AFT   Advanced Food Technology 

ATP   adenosine triphosphate 

CHeCS  Crew Health Care System 

CHI    Crew Health Index  

CMS   countermeasure system 

CNS   central nervous system 

CO2   carbon dioxide 

CSF   cerebrospinal fluid 

DCS   decompression sickness 

P   pressure difference 

DRM   design reference mission 

EAA   equivalent air altitude 

EAWG  Exploration Atmospheres Working Group 

EVA   extravehicular activity 

EVAC    evacuation 

ExMC    Exploration Medical Capability 

FIO2   inspired oxygen fraction 

ft   foot 

g   gravity 

HEOMD   Human Exploration and Operations Mission Directorate 

HH   hypobaric hypoxia  

HIF 1   hypoxia-inducible factor 1 

HMS   Health Maintenance System 

ICP intracranial pressure 

IMM  Integrated Medical Model 

ISS   International Space Station 

JSC   Johnson Space Center 

kg   kilogram 

k number of gas species in tissue 

lb   pounds 

LLSQ Lake Louise symptom questionnaire 

LOCL loss of crew life 

LSAH Lifetime Surveillance of Astronaut Health 
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G   microgravity 

m   meter 

min   minute 

ml   milliliter 

mmHg   millimeters of mercury (pressure) 

MMSEV   Multi Mission Space Exploration Vehicle 

n sample size 

NASA   National Aeronautics and Space Administration 

NBL   Neutral Buoyancy Laboratory 

NEA   near-Earth asteroid 

NEO   near-Earth object 

NH   normobaric hypoxia 

N2   nitrogen 

O2   oxygen 

OSaD    oxidative stress and damage  

P2   final pressure 

PB   atmospheric pressure 

PB   prebreathe 

P(DCS)  probability of decompression sickness 

pH   measure of the acidity or basicity 

PI Principal Investigator 

PIO2   inspired (wet) partial pressure of oxygen 

ppN2   partial pressure of nitrogen 

ppO2    partial pressure of oxygen 

PRD    Program Requirements Document 

psia   pounds per square inch absolute 

SaO2   arterial blood oxygen saturation 

SMEMCL   Space Medicine Exploration Condition List 

SpO2   blood oxygen saturation  

STPD   standard temperature (0 Celsius), pressure (1 ATM), dry gas  

STS   Space Transportation System 

VGE   venous gas emboli 

VIIP   visual impairment / intracranial pressure 

WEI   Work Efficiency Index 


