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This paper describes the design and use at of the Trick Simulation Toolkit, a 

simulation development environment for creating high fidelity training and engineering 

simulations at the NASA Johnson Space Center and many other NASA facilities. It 

describes Trick's design goals and how the development environment attempts to 

achieve those goals. It describes how Trick is used in some of the many training and 

engineering simulations at NASA. Finally it describes the Trick NASA/Open source 

project on Github.   

I. Introduction 

he Trick Simulation Toolkit is a simulation development environment used to create high fidelity training 

and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. Its 

purpose is to generate computer simulations that have a common architecture from a collection of user-supplied 

model code and a simulation definition file. In doing so, Trick provides automated job scheduling for user-

supplied model functions, numerical integration, the ability to write and restore human readable checkpoints, 

data recording, interactive variable manipulation, a run-time interpreter, and many other commonly needed 

capabilities. Also included in Trick are tools for plotting recorded data and various other supporting utilities and 

libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX computer operating 

systems. 

II. The Goal of Trick 

The goal of Trick is to help simulation developers focus on their domain and the algorithms and equations of 

their problem rather than repeatedly solving the same, time consuming architecture problems and re-

implementing required capabilities. Trick seeks to reliably1 accomplish this by automating the implementation 

of commonly needed simulation capabilities and by automating the build process of the executable. 

III. The Simulation Definition (S_define) File 

In order to accomplish the desired automation, Trick needs to "learn" about the specific variables, data 

types, functions, and scheduling requirements of a simulation's models. This starts with the simulation 

definition file (S_define), an example of which is shown in Figure 1 below. This example comes from a 

simulation included in the Trick software distribution, called SIM_cannon_integ. It is a very simple simulation 

of a cannon ball in flight. 

 

                                                           
1 Senior Engineer, 1002 Gemini St, Suite 200 
2 Aerospace Engineer, 2101 NASA Parkway 
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Figure 1 - Example S_define File 

 

An S_define file specifies everything necessary to build a simulation: 

 

 Data types 

 Variable definitions 

 Job scheduling specifications 

 Compilation unit dependencies 

 

In the S_define, data type information is provided by model header files (preceded by ##include) and 

Trick::SimObject class definitions. 

 

Trick::SimObject is a special class (a data-type) for grouping related data members (e.g., cannon above) and 

job scheduling specifications of a simulation component. The state of a Trick simulation is represented by a 

collection of SimObject instances, variables of type Trick::SimObject. Some SimObjects and instances are 

already defined by Trick to provide standard simulation features. In the example above, these are included from 

"default_trick_sys.sm.”  A simulation developer creates the remaining SimObjects and instances thereof to fully 

define the simulation.  

 

The last two lines of the S_define in the example above are variable definitions. The variable dyn is an 

instance of CannonSimObject. The variable dyn_integloop is an instance of IntegLoop that is executed every 10 

milliseconds and operates on dyn. The cannon data member within dyn is accessed as dyn.cannon. 

 

The source files specified in LIBRARY DEPENDENCIES are the starting point for the recursive 

determination of the files that need to be compiled and linked to build the simulation. Trick headers in these 

files may specify additional source code dependencies, and so forth. Libraries may also be specified for linking 

into the final simulation executable. 

IV. Providing Access to Simulation Variables 

Central to automating access to simulation variables are: 
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 Descriptions of a simulation's variables and data types 

 The ability to translate between a variable's name and its address 

 

The ability to translate a variable's name to its address allows a Trick simulation to automatically provide 

various system components (both internal and external) with access to its variables by name. This capability 

allows Trick to automate and provide the following capabilities: 

 

 Input-processor 

 Data recording 

 Restoration of the simulation state from a checkpoint file 

 A variable-server, which provides network access to simulation variables 

 

The variable server enables the implementation of networked simulation clients such as: 

 

 Trick Sim Control Panel 

 Trick View 

 StripChart 

 

Many of  Trick’s users also implement their own project-specific variable server clients for monitoring and 

control of their simulations. 

 

The opposite translation, from an address to a name, allows a Trick simulation to automatically represent 

variables in a human readable form, as is done when writing a checkpoint. A checkpoint is a textual, human-

readable representation of a simulation's state. At any time during the execution of a Trick simulation, one can 

write a checkpoint to file. A simulation’s state can also be restored from a checkpoint file. 

 

SWIG (the open-source interface compiler) provides access to variables for Trick's embedded Python 

interpreter. ICG (Trick's interface code generator) and Trick's Memory Manager provide access for the 

remaining capabilities listed above. 

 

Data type information is determined by scanning the SimObject classes and the header files listed in the 

S_define file. This also includes recursively scanning any files that they may include. Variable definitions (i.e., 

declarations that actually create variables) are also scanned and recorded from the S_define file. This data 

collection occurs when the utility Trick-CP is invoked to build a simulation. Trick-CP calls both SWIG  and 

ICG to gather information about variables and data-types and to record that information in the form of 

generated interface code. 

A. SWIG, Python and the Input Processor 

By scanning and processing SimObjects and header files, SWIG can generate auto-coded interfaces to 

simulation variables and functions for Trick's embedded Python interpreter, referred to as the "input processor." 

 

The primary purpose of the input processor is to allow a user to conveniently configure a simulation run. 

Because it provides access to simulation framework variables and functions, as well as those of the simulation 

models, it provides a great deal of control.  

B. Trick's Interface Code Generator  (ICG) 

Trick's Interface Code Generator (ICG) also scans simulation header files for data type information, which 

it encodes within C-language tree structures of ATTRIBUTES records within generated "io_src" interface code. 

Arrays of ATTRIBUTES records are used to encode the elements of user defined data types (that is: struct and 

class). They can also represent arrays of and pointers to these types in addition to primitive types. The elements 

of an ATTRIBUTES record are as show in Figure 2 below: 
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Figure 2 - ATTRIBUTES Record 

 

 name represents the name of an element of a user-defined data type. 

 type indicates whether the element is a primitive or a composite type. Think of it as the "type" of data-

type. 

 type-name is the C/C++ data-type of the element. 

 offset specifies the location of the element within its parent. If the element's data-type is composite, then 

 attr points to the ATTRIBUTES array that describes it otherwise, this element = NULL.  

 num_index specifies the dimensionality of the element. If num_index is non-zero, then 

 index specifies the size of each array dimension. 

 

In Figure 3 are four examples of data-type encoding with ATTRIBUTES: 

 

 
Figure 3 – Examples of Data Type Encoding Using ATTRIBUTES 

 

C. The Memory Manager 

Access to variables is provided by names or addresses. A variable’s data type describes how its values are 

represented in memory. In Trick, the ALLOC_INFO data type represents the "knowledge" of a variable. 

 

 
Figure 4 - How Variables are Represented 
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Trick's Memory Manager represents all of a simulation’s state variables as a collection of ALLOC_INFO 

records. Every instance of a Trick::SimObject defined in the S_define file will have an associated 

ALLOC_INFO record. Any other variables that have been explicitly defined or declared using calls to the 

Memory Manager  will also have ALLOC_INFO records. Here, declare means to provide a data-type and an 

address to tell the Memory Manager that a variable exists. Define means to provide a data-type and request to 

the Memory Manager to create (allocate) a new variable. A simulation's data types are gleaned from the header 

files (.h or .hh files) included by its S_define file. 

D. An Example Representation of a Variable 

Using Circle__attributes from the Example 3 of Figure 3 above, an instance of Circle named pad whose radius 

= 7 and whose center is at (4,5) would be represented in the Memory Manager as shown in Figure 5: 

 

 
Figure 5 - Example Representation of a Variable 

 

E. Translating Variable References 

The Memory Manager’s ALLOC_INFO list and ICG-generated ATTRIBUTES provide the necessary 

information to translate references in both directions. 

 

Using the example of the pad variable in Figure 5 above, the two examples below illustrate how these 

translations are performed.  

 
 

Figure 6 – With Address Calculations 

 

Suppose for the sake of these examples that the address of the pad allocation is 1000. 

 

1. Example Translation of an Address to a Name 

To translate the address 1008 to a name, the memory manager searches for the ALLOC_INFO record whose 

address is less than or equal to 1008 and whose address + size is greater than 1008. It's found, and its name is 

pad, so the name of the translated addresses starts with pad. Stepping into the ATTRIBUTES, we see the first 

element radius. We add its offset to the address of pad and compare it to 1008. It's not the address we're looking 

for, so we move on to center and check the sum of the address of pad and the offset of center. The addresses 

match. So far the name we've accumulated is pad.center, but center is TRICK_STRUCTURED, meaning it's a 
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composite variable, so we have to look at its ATTRIBUTES. The first element, with offset of 0, is x. So, the 

final name is pad.center.x. The name that corresponds to address 1008 is pad.center.x. 

 

2. Example Translation of a Name to an Address 

To translate the name pad.center.y to an address, the memory manager searches for the ALLOC_INFO record 

whose name is pad. In this case, its address is found to be 1000. Following the period, in the name is center. So 

we next search for center in the ATTRIBUTES array. Its offset is 8, which we add to the address of pad. 

Remaining in the name is y. Because center is a composite variable, it too has an ATTRIBUTES array. We 

search it to find y, and we add its offset to the address for a final result of 1016. So, the address that corresponds 

to pad.center.y is 1016. 

 

The data-type of y is double, so Trick can print its value as: 

 

printf("%g", *(double*) 1016 ); 

 

By maintaining a complete representation of the simulation state, ICG, the Memory Manager, and SWIG make 

it possible for Trick to automatically provide the input-processor, data recording, checkpoint and checkpoint-

restore, the variable-server, and the various client applications. 

V. Job Scheduling 

A job is a call to a user-supplied C/C++ function that is scheduled in accordance with its specified job 

class. A job class dictates the circumstances under which a job's associated function is executed. It may also, 

with additional parameters, specify a job rate, priority, start time, stop time, and thread of execution. 

The Trick executive maintains numerous job queues. With the exception of instrumentation jobs, which can 

appear in any job queue, a job class indicates to which of the scheduler's job queues a particular job belongs. 

Also, with the exception of checkpoint job queues, all queues are associated with one of Trick's four basic 

simulation modes:  

1) Initialization 

2) Run 

3) Freeze 

4) Exit 

A. Initialization Mode 

 

The initial job-scheduling mode of a 

Trick-based simulation is Initialization. 

Its purpose is to initialize the simulation 

and Trick's system components. The 

behavior of the job scheduler during 

Initialization-mode is show in Figure 7. 

Initialization Mode and described below. 

 

Simulation time is maintained as integer 

time_tics. The parameter time_tic_value 

specifies the number of tics per second. 

software_frame is another parameter 

which stipulates how often the job 

scheduler synchronizes with external 

services such as data recording and (if 

enabled) a real-time clock. Both 

time_tic_value and software_frame 

parameters can be user-specified. 

Associating a function to the job class 

default_data places it in the default-
Figure 7. Initialization Mode 
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data-job-queue, causing it to be executed first, during initialization mode. Default-data jobs are meant to set the 

default simulation state. If specified in the S_define, they always run first, before any other job class. 

 

In addition to the job classes available to a developer, Trick's main job scheduler also recognizes certain system 

job classes. Trick's code generators use system jobs to implement framework functionality, such as data 

recording, check-pointing, real-time synchronization, and so forth. 

 

The input_processor class job is a system class. During Initialization mode, these jobs are executed after 

default data jobs. An input processor job calls an embedded Python interpreter to execute the simulation's "input 

file." An input file is a python script within which simulation variables can be set and functions, called to 

initialize a particular simulation run.  

 

The final job queue to be executed in initialization is for initialization class jobs. These jobs are meant to 

perform any final calculations and initialization prior to entering (cyclic) RUN mode. 

B. Run mode 

 

In Run mode, simulation time advances. 

The scheduler executes system and 

simulation model jobs periodically to 

propagate the simulation state over time. 

The behavior of the job scheduler during 

Initialization-mode is show in Figure 8 and 

described below. 

 

The software_frame parameter specifies 

the highest period (lowest frequency) of 

scheduler processing. It specifies how 

often the scheduler checks for mode 

change requests and how often it 

synchronizes with other services, external 

to the scheduler, like a real-time clock, 

data recording, and so forth. 

 

The software frame (period) should always 

be greater (longer) than or equal to that of 

the highest rate job.  

 

At the beginning of a software_frame, the 

scheduler executes all jobs that are in the 

top_of_frame job queue. One such job 

copies simulation data to the variable 

server. 

Next, the scheduler executes jobs in the input_processor_run job queue. Note that this is not the same as the 

input_processor job queue. Jobs in this system-queue evaluate Trick events. A Trick event is a small Python 

script with a condition that must be met for it to be executed. Whereas events are specified in the simulation's 

Python input file, their conditions are only evaluated, and their scripts, conditionally executed during RUN 

mode. 

 

The main scheduling queue may contain jobs of numerous job classes, each of which are to be executed at user-

specified simulation times. When the main queue is processed, only those jobs that indicate they are "ready-to-

run" and meet their timing criteria are executed. When multiple jobs are ready for execution at the same 

simulation-time, job class priority and an optional job-phase parameter determine the order of execution. If 

these too are the same, then execution order is simply the order in which the job specifications occur in the 

S_define file. 

Figure 8 - Run Mode 
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The highest priority job classes in the main scheduling queue are scheduled and automatic, in that order. The 

scheduled class is the most common, user-specified RUN-mode jobs. The simulation developer specifies the 

rate and offset at which these jobs are executed in the simulation’s S_define file. When simulation time is equal 

to a job’s offset plus an integer multiple of its rate, the job is executed. 

 

Automatic jobs are self-scheduled. Whereas the job scheduler will run them once, they are expected to tell the 

scheduler when they are next to be executed. 

 

The system_advance_sim_time job is a special system job that advances simulation time. For a given 

simulation-time, it is always executed after user-specified jobs.  

 

Following the update of simulation time, the integ_loop jobs are run, as shown in Figure 9. An integ_loop job 

is itself a job scheduler that schedules jobs associated with numeric integration. It simply executes all jobs in the 

pre-integration queue, integrates the state derivatives, processes all jobs in the dynamic event queue, process all 

jobs in the  post integration job queue, and then returns to processing of the main scheduler queue. 

 
Figure 9 - Integration Loop Job Scheduler 

 

The pre_integration and post_integration job classes are available simply to allow a developer to execute any 

code before or after an integration step. 

 

Derivative jobs are expected to calculate derivatives for use by the integration job. Integration jobs are 

expected to load the integrator with the state derivatives, call Trick’s integrate() utility function, unload the 

integrated state, and finally return the value that was returned by integrate(). Returning a value of zero indicates 

to the scheduler that the specified integration algorithm has finished the integration. Trick supplies numerous 

integration algorithms that simulation developers may specify. 

 

As the main scheduler loops and simulation time advances, it eventually reaches the next-frame-time. 

When this occurs, all end-of-frame jobs are executed. End-of-frame jobs are used to implement system 

functionality, such as real-time synchronization. If Trick-real-time is enabled, then a real-time synchronization 

job will monitor the chosen real-time clock source, waiting for it to catch up to simulation-time. When it does, 

the job returns execution to the scheduler, allowing simulation-time to progress. 

C. Freeze mode 

When commanded, a simulation will enter freeze-mode, and simulation time will stop. For a real-time 

simulation that is expected to regularly service hardware-in-the-loop, this might present a problem. Freeze-

mode job classes provide a means to define the behavior of a real-time simulation when time stops.  

 

Trick provides four job classes for defining this behavior: 

 freeze_init jobs are executed on entering freeze-mode. 

 unfreeze jobs are executed on leaving freeze-mode. 

 freeze_schedule are scheduled similarly to scheduled jobs executed in run-mode. 

 freeze jobs are scheduled during freeze mode.  
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Figure 10 - Freeze Mode 

D. Exit mode 

When Exit mode is commanded, only the queue for shutdown jobs is processed. These jobs allow a simulation 

developer to define what happens when the simulation ends. An example use might be to disconnect external 

communications channels in an orderly way. 

E. Any Mode 

Certain job classes and queues are not necessarily associated 

with a simulation mode. These are checkpoint jobs and 

instrumentation jobs. 

 

1. Checkpoint Job Classes 

Creating complete representation of a simulation state can 

sometimes require a little help. Certain components of a 

simulation, such as network socket variables and open file 

pointers, that simply can’t be represented in a checkpoint 

file. checkpoint jobs allow a simulation developer to tidy up 

just prior to dumping a checkpoint. Jobs of  class 

post_checkpoint are for doing whatever a developer might 

want to do just after a checkpoint is dumped.  

 

Similarly, restart jobs allow a developer to “tidy up” after 

reloading a checkpoint, like re-opening sockets or files. Jobs 

of  class preload_checkpoint are for doing what ever a developer might want to do just before a checkpoint is 

loaded. 

 

2. Instrumentation Job Class 

Instrumentation jobs are system jobs, used to implement certain system features such as frame-

logging. These can be placed in any of Trick’s job queues. 

 

VI. Automation of Simulation Building 

Finally, the collection and determination of the hierarchy of dependencies between compilation units 

allows auto-generation of a makefile to build the entire simulation, thus relieving the simulation developer of 

another potentially tedious and error-prone task. 

 

Building a Trick simulation simply requires executing the trick-CP utility in a simulation directory that 

Figure 11 - Checkpoint Job Queues 

Figure 12 – Checkpoint Reload Job Queues 
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contains a well-formed S_define file. 

 

From the S_define file, trick-CP: 

 Gathers variable definitions, such as instantiations of SimObjects that the simulation developer has 

created 

 Gathers job specifications from each of the SimObjects specified in the S_define 

 Recursively gathers header file dependencies, starting with those in the S_define that start with 

##include 

 Recursively gathers compilation unit dependencies, starting with those listed in the LIBRARY 

DEPENDENCIES section of the S_define. 

 Generates Python interface code by processing all of the gathered header files using SWIG 

 Generates Memory Manager interface code by processing all of the gathered header files code using 

ICG 

 Generates S_source.cpp from the S_define 

 Generates a makefile from the gathered compilation unit dependency information 

 Process the generated makefile to generate the simulation executable 

 

The makefile compiles all of the user’s model source, the generated S_source.cpp and the auto-generated 

interface code. It then links the compiled object code, any specified user-supplied libraries, and various pre-

compiled Trick libraries to produce the simulation executable. 

 

The makefile generated by trick-CP includes a supplementary file named S_overrides.mk, if it exists in the 

simulation directory. As its name suggests, the S_overrides.mk file allows one to over ride or supplement rules 

and environment variables used by the makefile. 

 

The S_overrides.mk file will often contain assignments to the following three environment variables: 

TRICK_CFLAGS, TRICK_CXXFLAGS, and TRICK_USER_LINK_LIBS. 

 

TRICK_CFLAGS, and TRICK_CXXFLAGS are flags that are passed to the the C and C++ compilers 

respectively. They contain –I flags that specify the directory path to the header files used by the simulation. 

 

 TRICK_USER_LINK_LIBS contains –L and –l flags used by the linker. These specify the library 

directory paths and the libraries that the simulation wishes to link into the final executable. 

 

VII. Applications of Trick 

Trick has a long history spanning nearly 25 years, providing a common simulation environment to all of 

NASA's crewed vehicle programs since 1991.   

 

In the early 1990s Trick was conceived and developed as a framework to support operational performance 

evaluations of the Shuttle Remote Manipulator System (SRMS).  The Canadian SRMS is six jointed robotic 

manipulator attached to the side of the Space Shuttle cargo bay.  The SRMS was used to deploy satellites and 

other experiments from the cargo bay as well as retrieve free flyers such as the Hubble Space Telescope and 

dock them into the cargo bay.  The first Trick based SRMS simulations, called the Space Shuttle Payload 

Deployment and Retrieval System (PDRS), included many of the core features still found in Trick today 

including the job scheduler, input processor, and data recording capabilities.  The PDRS simulation was used to 

prototype and test SRMS flight software.  The PDRS simulation performed dynamic loads analysis for 

upcoming SRMS operations.  The PDRS simulation performed ground and in-flight training for both astronauts 

and ground controllers. 

     



 

American Institute of Aeronautics and Astronautics 
 

 

11 

  
Figure 13. Shuttle Remote Manipulator System with Androgynous Peripheral Attach System (APAS) 

docking mechanism 

 

Beginning in the mid 1990s and continuing through today, Mobile Servicing System (MSS) Trick 

applications featuring the Canadian Space Station Remote Manipulator System (SSRMS) are used for a variety 

of tasks including flight controller and crew training, robotic operations planning, and dynamic analysis.  MSS 

based simulations are the most prolific Trick applications and are used for engineering analysis, robotic 

operation planning, and astronaut and flight grew training.  These applications are deployed in multiple JSC 

facilities including the Dynamic Skills Trainers (DST).  DST installations combine the MSS simulation, a 

simulated Robotics WorkStation (RWS), translational and rotational hand controllers, and 3D graphics into a 

single desktop trainer.  DSTs are designed to run on common desktop computer systems.  The Robotics On-

Board Trainer (ROBoT) project adapts the DST to run on the laptops found onboard the ISS. 

 

 
Figure 14. ROBoT installation on board the ISS 

 

Project Morpheus is a terrestrial lander used as a vertical test bed platform for developing technology and 

proving hardware and software systems for use in space exploration.  Flight software developed for the lander 
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uses NASA Goddard's Core Flight Software (CFS).  Project Morpheus wraps the lander's Core Flight Software 

(CFS) applications within a Trick simulation.  This CFS embedded within a Trick simulation combination was 

used throughout the development, test and operations software lifecycle by providing a single simulation 

supporting multiple test configurations such as single-computer embedded simulation, distributed simulation, 

hardware-in-the-loop simulation, and operator training. 

 

 
Figure 15. MMSEV above rendering of the Martian moon Phobos. 

 

For the next generation of space vehicles, the NASA Exploration Systems Simulations (NExSyS) project 

uses Trick applications to perform mission scenario development, vehicle design and performance analyses, and 

crew operations assessments for potential agency missions including exploration of asteroids and the Martian 

system. 

 

 
Figure 16. MMSEV above rendering of the Martian moon Phobos 
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VIII. NASA Open Source: Trick on Github 

Historically Trick was only available to other government agencies as a Government Purpose Release.  

Trick could only be used for the project it was specifically released to.  Beginning in 2007 Trick was 

reclassified as a NASA General Public Release.  As a General Public Release product this opened access to 

corporations, universities, and individuals outside of NASA projects.  However Trick was not completely open, 

Trick was still only available with an approved application, and non-US citizens were forbidden to use Trick.  

In February 2015 Trick transitioned from a General Public Release to an open source project under the NASA 

Open Source Agreement 1.3. As of February 2015, The Trick Simulation Toolkit is licensed NASA Open 

source, and is freely available for download at https://github.com/nasa/trick. 

IX. Conclusions 

The Trick simulation framework provides simulation developers with a development environment that frees 

them of the need to reimplement commonly required simulation capabilities, and many other tedious and error 

prone development activities. Trick enables simulation engineers to spend more of their time focused on the 

unique aspects of their simulation problem. Providing a common architecture and toolset for building computer 

simulations has additional benefits as well, such as code re-use. Well defined interfaces allow project specific 

code to be routinely reused for other projects. Also, developers moving between projects aren’t burdened with 

the need to re-learn a different architecture and toolset. These benefits are evident in the many training and 

engineering simulations developed at the NASA Johnson Space Center. 
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