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                   The Nuclear Thermal Rocket (NTR) represents the next evolutionary step in cryogenic 

liquid rocket engines. Deriving its energy from fission of uranium-235 atoms contained 

within fuel elements that comprise the engine’s reactor core, the NTR can generate high 

thrust at a specific impulse of ~900 seconds or more – twice that of today’s best chemical 

rockets. In FY’11, as part of the AISP project, NASA proposed a Nuclear Thermal 

Propulsion (NTP) effort that envisioned two key activities – “Foundational Technology 

Development” followed by system-level “Technology Demonstrations”. Five near-term NTP 

activities identified for Foundational Technology Development became the basis for the 

NCPS project started in FY’12 and funded by NASA’s AES program. During Phase 1 

(FY’12-14), the NCPS project was focused on (1) Recapturing fuel processing techniques and 

fabricating partial length “heritage” fuel elements for the two candidate fuel forms 

identified by NASA and the DOE – NERVA graphite “composite” and the uranium dioxide 

(UO2) in tungsten “cermet”. The Phase 1 effort also included: (2) Engine Conceptual Design; 

(3) Mission Analysis and Requirements Definition; (4) Identification of Affordable Options 

for Ground Testing; and (5) Formulation of an Affordable and Sustainable NTP 

Development Strategy. During FY’14, a preliminary plan for DDT&E was outlined by GRC, 

the DOE and industry for NASA HQ that involved significant system-level demonstration 

projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce 

development costs, the GTD and FTD tests use a small, low thrust (~7.5 or 16.5 klbf) engine. 

Both engines use graphite composite fuel and a “common” fuel element design that is 

scalable to higher thrust (~25 klbf) engines by increasing the number of elements in a larger 

diameter core that can produce greater thermal power output. To keep the FTD mission cost 

down, a simple “1-burn” lunar flyby mission was considered along with maximizing the use 

of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10-B2 

engine and Delta Cryogenic Second Stage) to further ensure affordability. This paper 

provides a preliminary NASA, DOE and industry assessment of what is required – the key 

DDT&E activities, development options, and the associated schedule – to affordably build, 

ground test and fly a small NTR engine and stage within a 10-year timeframe. 

Nomenclature 

AES / AISP = Advanced Exploration Systems / Advanced In-Space Propulsion 

DDT&E  = Design Development Test and Evaluation 

DOE  = Department of Energy 

FTD / GTD = Flight / Ground Technology Demonstration 

K / klbf  = Temperature (degrees Kelvin) / thrust (1000’s of pounds force) 

NCPS  = Nuclear Cryogenic Propulsion Stage 

NERVA  = Nuclear Engine for Rocket Vehicle Applications 

NNSS  = Nevada National Security Site    

t / V  = metric ton (1 t = 1000 kg) / velocity change increment (km/s) 
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I. Introduction, Background, and Overview 

 

enewed interest and funding for NTP began in FY’11 when it was identified as a key propulsion option under 

the AISP component of NASA’s Exploration Technology Development and Demonstration (ETDD) program. 

A strategy for NTP development was outlined by Glenn Research Center (GRC), the DOE and NASA Headquarters 

that included two key elements – “Foundational Technology Development” followed by system-level “Technology 

Demonstration” projects. Five task activities were initiated for Foundational Technology Development and became 

the basis for the NCPS project started in FY’12 under the newly created AES program that replaced ETDD shortly 

after its creation. During Phase 1 (FY’12-14), NCPS was primarily focused on (1) Recapturing fuel processing 

techniques and demonstrating the capability to fabricate short fuel element (FE) segments based on the “heritage” 

designs and candidate fuel forms selected by NASA and DOE – NERVA graphite “composite” (GC) and UO2 in 

tungsten (W) “cermet”. The Phase 1 effort also included: (2) Engine Conceptual Design; (3) Mission Analysis and 

Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an 

Affordable and Sustainable NTP Development Strategy.  

   During Phase 1, work on GC fuel processing, FE fabrication and coating was performed at the Oak Ridge National 

Laboratory (ORNL) while the Marshall Space Flight Center (MSFC) led the development effort on the cermet 

option. Some limited testing of short cermet segments (~3 inches) was also conducted at MSFC using their Compact 

Fuel Element Environmental Test (CFEET) device built to evaluate small fuel samples at high temperatures in a 

hydrogen environment.  

   To focus the fuel development effort and maximize use of its limited resources, the AES program decided in 

FY’14 that a “leader – follower” fuel down selection between GC and cermet was required. The chosen “lead” fuel 

would receive increased resources to mature and qualify it more quickly and to increase the fidelity of engine 

designs that would use it. Work on the “follower” fuel would also continue but at a lower “basic research” level.  

   To aid them in their decision, the AES program convened an Independent Review Panel (IRP) in July 2014 and 

tasked them with reviewing the available data for both fuel types then making a recommendation on a leader – 

follower fuel. Despite a substantial investment in facilities and equipment, thermal cycling tests of short cermet fuel 

element segments in CFEET were largely unsuccessful. By contrast, substantial progress in extruding and coating 

partial length GC fuel elements was made by ORNL on a more limited budget. A compelling argument for selecting 

GC fuel over the cermet option was presented by DOE and GRC at a second meeting of the IRP on December 16, 

2014 and a follow-on report was provided to them one month later [1]. In February 2015, the report’s findings and 

recommendation that GC fuel be the lead fuel option was endorsed by the IRP and subsequently adopted by the AES 

program. 

   In FY’15, the NCPS project was renamed the NTP project. The key task activities for Phase 2 (FY’s 15 – 17) 

remained largely the same as in Phase 1, but with a mid-year refocusing by the participating NASA centers and 

DOE laboratories on (1) GC fuel development, demonstration and validation; (2) conceptual design and (3) 

requirements definition for a small, but scalable, low thrust engine; (4) identifying the best options and requirements 

for ground testing; and (5) formulating an affordable DDT&E plan supporting system-level ground and flight 

technology demonstrations within a decade following an “authority to proceed”  (ATP) decision.  

   A key FY’15 milestone for the NTP project is the fabrication and testing of a partial length (~16 inches) GC fuel 

element. The FE will be fabricated at ORNL using depleted uranium (DU) or a surrogate material. Its exterior and 

internal coolant channel surfaces will then be coated with zirconium carbide (ZrC) using a chemical vapor 

deposition (CVD) process. The FE will then be shipped to the MSFC where it will undergo non-nuclear testing in 

the NTR Element Environmental Simulator (NTREES) facility [2].  With the upgrades to NTREES completed in 

FY’14, the facility will be capable of providing up to 1.2 megawatts (MW) of radiofrequency (RF) power for FE 

“thermal cycle” testing in flowing hydrogen at pressures up to 1000 psi and temperatures up to ~3000 K. NTREES 

will be used to validate the heritage Rover/NERVA FE geometry, its GC fuel-matrix material, and its protective 

coatings prior to beginning irradiation testing in FY’17. The latter would be conducted at a DOE facility like the 

Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) as an example.  

   The NTP project’s Phase 2 effort (FY’s 15 – 17) could also include possible non-nuclear “proof-of-concept” 

subscale validation of the SAFE (Subsurface Active Filtration of Exhaust) ground test option – also referred to as 

“borehole” testing. This subscale test would be conducted at the Nevada National Security Site (NNSS) and would 

use a small liquid oxygen / hydrogen chemical rocket operated “fuel-rich” to simulate the NTR engine [3]. Other 

possible options for engine testing at the NNSS include the use of horizontal tunnels at either the underground U1a 

complex or the P-tunnel complex located inside the Rainier Mesa. 

R 
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   In FY’14, a preliminary development schedule / DDT&E plan was produced by GRC, DOE and industry for the 

AES program. It included foundational technology development and significant system-level demonstration projects 

involving ground technology demonstration (GTD) tests at the NNSS, followed by a flight technology 

demonstration (FTD) mission. Some key activities from the schedule / plan are shown below in Fig. 1. 

 

 

 

 

 

     

 

 

 

 

 

 

 

Figure 1.  Notional NTP Development Schedule Includes Foundational Technology Development,  

Followed by System-Level Ground and Flight Technology Demonstrations 
 

 

   The Foundational Technology Development component of the schedule includes “State-of-the-Art” (SOTA) 

reactor/engine modeling, conceptual design and operational requirements definition, along with planning and 

schedule development, the subject of this paper. As mentioned above, NTP technology development is primarily 

focused on demonstrating the viability and performance of GC fuel through “separate effects” tests involving 

NTREES and irradiation testing followed by post-irradiation examination (PIE) and evaluation. Last, but not least in 

order of importance, is an assessment of candidate ground test facility (GTF) options and the selection of a primary 

approach. Subscale validation testing would demonstrate the concept, provide data for benchmarking codes, and 

help anchor GTF planning and preliminary design activities. Final GTF design, construction, startup and checkout 

would occur during the Ground and Flight Technology Demonstration portion of the development schedule.   

   In order to reduce development time and cost, the GTD tests and the FTD mission will use small, low thrust 

engines (~7.5 or 16.5 klbf) each using a common fuel element design. This approach will allow scalability to the 

higher thrust engines, when and if required, by increasing the number of elements and the reactor core diameter so 

that it has a greater thermal power output. A small NTP ground test engine should also easier to transport, assemble 

and disassemble after testing has been completed. As currently envisioned, the GTD project would build and test 1-2 

ground test articles (GTA1, GTA2) and one flight test article (FTA) that provides system technology demonstration 

and design validation for the follow-on FTD mission.  
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   The FTD mission chosen is a simple “1-burn” lunar flyby mission selected to minimize the engine burn duration, 

the LH2 propellant loading, stage size and complexity. The demonstration stage also maximizes the use of existing 

and flight proven liquid rocket and stage components to further ensure affordability.  

   This paper provides a preliminary NASA, DOE and industry assessment of the key DDT&E activities, 

development options, and the associated schedule required to affordably build, ground test and fly a small NTR 

engine and stage. It ends with a summary of our findings and some concluding remarks. 

II. NTR System Description and Past Technology Accomplishments 

 

   The NTR uses a compact fission reactor core containing 93% “enriched” uranium (U)-235 fuel to generate 100’s 

of megawatts of thermal power (MWt) required to heat the LH2 propellant to high exhaust temperatures for rocket 

thrust. In an “expander cycle” Rover/NERVA-type engine (Fig. 2), high pressure LH2 flowing from either a single or 

twin turbopump assembly (TPA) is split into two paths with the first cooling the engine’s nozzle, pressure vessel, 

neutron reflector, and control drums, and the second path cooling the engine’s core support tie-tube assemblies. The 

flows are then merged and the heated H2 gas is used to drive the TPAs. The hydrogen turbine exhaust is then routed 

back into the reactor pressure vessel and through the internal radiation shield and upper core support plate before 

entering the coolant channels in the reactor’s GC fuel elements. Here it absorbs energy produced from the fission of 

U-235 atoms, is superheated to high exhaust temperatures (Tex ~2550 – 2950 K depending on uranium fuel loading), 

then expanded out a high area ratio nozzle (~300:1) for thrust generation. 

 

 

 

 

 

 

 

Figure 2.  Schematic of “Expander Cycle” NTR Engine with Dual LH2 Turbopumps  

 

   Controlling the NTR during its various operational phases (startup, full thrust and shutdown) is accomplished by 

matching the TPA-supplied LH2 flow to the reactor power level. Multiple control drums, located in the reflector 

region surrounding the reactor core, regulate the neutron population and reactor power level over the NTR’s 

operational lifetime. The internal neutron and gamma radiation shield, located within the engine’s pressure vessel, 

contains its own interior coolant channels. It is placed between the reactor core and key engine components to 

prevent excessive radiation heating and material damage. 

   The fuel elements tested in the Rover / NERVA programs [4] were fabricated using a “graphite matrix” material 

that contained the U-235 fuel in the form of either coated particles of uranium carbide (UC2) or as a dispersion of 

uranium and zirconium carbide (UC-ZrC) referred to as “composite” fuel. The higher performance GC fuel was 

developed as a “drop-in replacement” for the coated particle fuel and was tested in the Nuclear Furnace element test 

reactor (NF-1) [4] toward the end of the Rover program. The GC elements were successfully tested for ~2 hours at 

peak power densities of ~5 MWt per liter (~5000 MWt/m3) and achieved peak fuel and hydrogen exhaust 

temperatures of Tpeak ~2700 K and Tex ~2450 K, respectively. The GC elements also demonstrated better corrosion 

resistance than the standard coated particle graphite matrix fuel element used in the previous Rover/NERVA reactor 

tests. Composite fuel’s improved corrosion resistance is attributed to its higher coefficient of thermal expansion 

(CTE) that more closely matches that of the protective ZrC coating, thereby helping to reduce coating cracking. 

Electrical-heated composite fuel elements were also tested by Westinghouse in hot hydrogen at 2700 K for ~600 

minutes – equivalent to ten 1-hour cycles. At the end of Rover/NERVA program, composite fuel performance 

projections [5] were estimated at ~2-6 hours at full power for hydrogen exhaust temperatures of ~2500-2800 K. 
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   Heritage Rover/NERVA fuel elements had a hexagonal cross section (~0.75 inch across the flats) and 19 axial 

coolant channels that were CVD-coated with niobium carbide (NbC) initially, then with ZrC to reduce coating 

cracking, hydrogen penetration and subsequent erosion of the graphite matrix material. Individual elements were 

1.32 m (52 inches) in length and produced ~1 MWt during steady state, full power operation.  

   In addition to the FEs, later Rover/NERVA reactor cores used improved hexagonal-shaped tie tube (TT) elements 

in place of the earlier tie rods to provide axial structural support to the adjacent FEs surrounding them. The tie rods 

and TTs were both attached to an aluminum support plate located at the cold end of the reactor. Unlike the single-

pass tie rods that discharged their hydrogen coolant directly into the core exit chamber, the two-pass regenerative 

cooled TTs had a coaxial Inconel tube to carry the hydrogen coolant that was discharged into the core inlet allowing 

further FE heating and significantly raising the engine’s specific impulse. These same TTs are used to supply a 

source of heated hydrogen for turbine drive power in the expander cycle engine designs current under study. 

   A sleeve of zirconium hydride (ZrH) moderator material can also be incorporated in the TTs to help increase core 

reactivity and allow construction of smaller size reactor systems like the Rover program’s Pewee engine [4]. Pewee 

was designed and built to evaluate higher temperature, longer life fuel elements and improved coatings. It produced 

~25 klbf of thrust and set several performance records including the highest fuel element hydrogen exhaust 

temperature of ~2550 K, and the highest peak fuel temperature of ~2750 K. Other performance records included 

average and peak power densities in the reactor core of ~2340 MWt/m3 and ~5200 MWt/m3, respectively. Improved 

ZrC coating was also introduced in Pewee and showed performance superior to the NbC coating used in previous 

reactor tests. This same ZrC coating is being applied to the GC fuel elements currently being fabricated at ORNL. 

   A final reactor design, known as the Small Nuclear Rocket Engine (SNRE) [6], was developed by Los Alamos 

National Laboratory (LANL) near the end of the Rover/NERVA program. Although it was not built, it incorporated 

lessons learned from Pewee and other reactor designs and test results. The SNRE FE had the same hexagonal cross 

section and coolant channel number, but was shorter (0.89 m / 35 inch), and produced ~0.65 MWt. Because it was 

smaller than Pewee at ~16.4 klbf of thrust, the SNRE required additional ZrH tie tubes to provide the extra neutron 

moderation needed in the engine’s smaller core. In the SNRE core, each FE had 3 TTs and 3 FEs surrounding it 

(shown in Fig. 3). It also used GC fuel elements (with ~35 volume % UC-ZrC content) and an expander cycle with 

the turbine drive power provided solely by TT hydrogen discharge. The SNRE is the larger of the two small engine 

designs that were considered for ground and flight technology demonstration in this preliminary assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Coated Particle and Composite SNRE Fuel Element and Tie Tube Arrangement 
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   Regarding past accomplishments and technology SOTA, NTP has a proven track record plus a specific impulse 

potential 100% higher than today’s best chemical rockets. During the Rover/NERVA programs (1955-1972), a 

technology readiness level (TRL~5-6) was achieved. Twenty rocket reactors were designed, built and ground tested 

[4] demonstrating: (1) a wide range of thrust levels (~25, 50, 75 and 250 klbf); (2) high temperature graphite-based 

coated particle and composite nuclear fuels; (3) hydrogen exhaust temperatures up to 2550 K (achieved in Pewee); 

(4) sustained engine operation (over 62 minutes for a single burn achieved in the NRX-A6); as well as (5) 

accumulated lifetime at full-power; and (6) restart capability (>2 hours with 28 startup and shutdown cycles 

achieved in the NRX-XE experimental engine) – all the requirements needed for human missions to Mars. Despite 

these accomplishments, the Rover/NERVA program was cancelled in January 1973 without a flight demonstration. 

Today, NASA is providing modest funding for a small but focused technology development and demonstration 

effort that it hopes will lead to the successful ground testing and eventual flight of a small NTR engine. 

III. Recent Reactor / Engine Modeling and Conceptual Design Activities  

Candidate “Heritage” Fuel Element Designs 

   In the Rover program, a common fuel element / tie tube design was developed and used to construct a wide range 

of different thrust engines. This included the 50 klbf Kiwi-B4E (1964), the 75 klbf Phoebus-1B (1967), the 250 klbf 

Phoebus-2A (June 1968), then less than six months later, the 25 klbf Pewee engine (Nov-Dec 1968). This same 

approach but in reverse is being followed by the NTP project – design, build, ground test, then fly a small NTR 

engine first, then scale it up in size to the larger 25 klbf  “Pewee-class” engines featured in NASA’s Mars Design 

Reference Architecture (DRA) 5.0 study [7, 8]. 

   During Phase 1 of the NCPS project, “Point-of-Departure” (POD) engine designs for both a small “criticality-

limited” and full size (25 klbf class) engine were developed for both fuel types using the heritage fuel element 

designs shown in Fig. 4. For the GC fuel, the well-established 19-hole hexagonal FE and TT geometry from the 

Rover/NERVA program was baselined. Ceramic-metal or “cermet” fuel, composed of uranium dioxide (UO2) in a 

tungsten (W) metal matrix material, was also developed during the 1960’s to early 1970’s by General Electric (GE) 

and Argonne National Laboratory (ANL) as a backup to the Rover/NERVA fuel. Several conceptual reactor/engine 

designs were generated by the GE-710 Program [9] and the ANL Nuclear Rocket Program [10]. The GE-710 

element was designed for use in higher thrust engines and in general did not scale down well to lower thrust levels. 

The reverse is true for the ANL-200 element. It was designed for a low thrust engine but did not scale up well to 

higher power levels. The cermet engine cores also required “seven to ten times more” U-235 fuel than the GC core 

for the full size 25 klbf-class engine [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Heritage Fuel Element Geometries and Relative Size Comparison 



                                                                                                                                      AIAA-2015-3774  

7 
American Institute of Aeronautics and Astronautics 

51st Joint Propulsion Conference & Exhibit, Orlando, FL, July 27 - 29, 2015  

   Compared to the graphite-based fuels tested during Rover/NERVA, cermet fuel requires considerably more 

research and development time since its compositional makeup and fabrication processes are still not well defined 

[1]. Demonstrated operating temperatures and volumetric power densities for cermet fuel samples tested in a reactor 

environment (~20 samples in all) were well below that required for a viable NTP system [1]. Lastly, the cermet 

engine designs developed by GE and ANL were only conceptual and no NTP cermet reactor has ever been 

constructed or tested – a stark contrast to the 20 reactor cores tested with graphite fuel during the Rover/NERVA 

program. It is for these reasons that composite fuel was the logical choice in developing a schedule focused on 

ground- and flight-testing a small engine within a 10-year timeframe. 

Collaborative Modeling Approach 

   A collaborative integrated reactor/engine modeling effort between GRC and ORNL has been used to develop the 

POD designs for both the small “criticality-limited” and full size engine. Both engines used GC fuel and the 

established FEs and TTs used in the Rover/NERVA cores. The design and analysis sequence is an iterative one that 

includes the following steps: (1) establish a preliminary core configuration that meets the fundamental neutronic 

performance requirements of criticality and adequate control swing; (2) estimate the approximate thrust level based 

on power density considerations for the particular fuel being analyzed; (3) modify the core configuration to adjust 

criticality, control swing, and estimated thrust level of the engine; (4) use the neutron and gamma energy deposition 

rates resulting from steps (1-3) as input to a coupled thermal-fluid-structural (TFS) analysis of the GC core’s interior 

components, specifically the coupled FE and TT; and (5) once acceptable neutronic and TFS performance is 

achieved, perform engine cycle balance analysis and estimate of the engine’s overall size and mass.  

   This collaborative methodology between GRC and DOE is depicted in Fig. 5 and shows the flow of data between 

the different computational tools used in developing the POD designs. These tools include MCNP (Monte Carlo N-

Particle transport code) for reactor neutronics [11], ANSYS for multi-physics analysis [12] and NESS (Nuclear 

Engine System Simulation code) for engine cycle balance analysis and mass estimation [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Computational Tool Methodology used in Designing Rover/NERVA-derived GC Engines 
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Criticality-Limited, SNRE and Pewee-class Graphite Composite Engine Designs 

   For Rover/NERVA-derived engine designs, a variety of different FE – TT arrangements are possible depending on 

the desired thrust class of the engine (see Fig. 6). In the larger size engines tested in the Rover program, a “sparse” 

FE – TT arrangement was used with each FE having 2 adjacent TTs and 4 adjacent FEs comprising its six 

surrounding elements. In this sparse pattern, the FE to TT ratio is ~3 to 1. In the SNRE design, shorter FEs were 

used and additional TTs were included in the reactor to increase core reactivity. With the “SNRE” FE – TT pattern 

each FE has 3 adjacent TTs and 3 adjacent FEs surrounding it and the FE to TT ratio is ~2 to 1. An important feature 

common to both the sparse and SNRE FE – TT patterns is each tie tube provides redundant mechanical support for 

six adjacent fuel elements. 

 

 

 

Figure 6.  Possible FE – TT Arrangements for Different Thrust Class GC Engines 
 

   Recent MCNP transport modeling of engine reactor cores by Schnitzler et al., [14,15] has shown that the SNRE 

design can be scaled down to even lower thrust levels (~7.5 klbf) or up to the full size 25 klbf-class engine. For lower 

thrust engines with short length elements, additional reactivity gains can be achieved by employing an entirely new 

FE – TT arrangement identified by Schnitzler as the “dense” element pattern consisting of parallel rows of FEs and 

TTs. In this configuration each FE has 4 adjacent TTs and 2 adjacent FEs surrounding it and the FE to TT ratio has 

now decreased to ~1 to 1.  

   Table 1 summarizes engine and reactor performance characteristics for several GC engines ranging in size from a 

small “criticality-limited” engine to the 25 klbf “Pewee-class” engine used in Mars DRA 5.0. All the designs utilize 

an expander cycle and assume a peak fuel temperature of ~2860 K and nozzle area ratio (NAR) of 300:1. The 

criticality-limited engine has a thrust of ~7.52 klbf and an engine thrust-to-weight (T/Weng) ratio of ~1.9. It uses the 

dense FE – TT pattern (FE to TT ratio of ~1:1), 35 inch (~89 cm) long FEs and TTs, and has a fissile fuel loading of 

~600 mg of 93% enriched U-235 per cm3. With a hydrogen flow rate of ~3.82 kg/s, a chamber pressure of ~565 psia 

and a gas temperature exiting the fuel elements (the chamber inlet temperature) of ~2739 K, the engine’s specific 

impulse (Isp) is ~894 s. The maximum fuel temperature before melting begins is estimated to be ~2900 K for the 

high fuel loading used in this small engine so the temperature margin from peak to melt is ~40 K. The total quantity 

of enriched U-235 fuel in the engine is ~27.5 kilograms (kg). At ~7.52 klbf thrust, the small engine has a nominal 

power output of ~157 MWt and an average power density of ~3.0 MWt per liter. The corresponding peak power 

density is ~5.37 MWt per liter – just slightly higher than the ~5 MWt per liter value demonstrated for composite fuel 

in the Nuclear Furnace. The engine’s overall length is ~6.19 m, which includes an ~1.26 m long, retractable 

radiation-cooled nozzle skirt extension. The corresponding nozzle exit diameter is ~1.38 m. 

   The performance parameters for both the 1972 baseline SNRE engine and a recent updated version (SNRE+) are 

shown in Table 1. The baseline SNRE had a nominal power output was ~367 MWt, an average power density of 

~3.44 MWt/liter, NAR of ~100:1, and operated with a peak fuel temperature of ~2860 K. The reactor core had 564 

fuel elements, 241 tie tubes, a 14.7 cm thick reflector and a pressure vessel diameter of ~98.5 cm. The engine’s 

overall length was just under 4.5 m and its T/Weng ratio was ~2.92. With a fissile fuel loading of ~0.60 grams/cm3, 

and over 300 more fuel elements, the U-235 fuel inventory in the SNRE core was ~59.6 kg. Other key performance 

parameters for the SNRE include a thrust level of ~16.4 klbf, a hydrogen exhaust temperature of ~2695 K, hydrogen 

flow rate of  ~8.5 kg/s, chamber pressure of ~450 psia, and an engine Isp of ~875 s. 

   The SNRE+ uses the same reactor system but produces slightly more thrust (~16.675 klbf) and operates at a higher 

exhaust temperature (~2733 K). With a hydrogen flow rate of ~8.40 kg/s, a chamber pressure of ~450 psia, and a 

 Sparse  FE – TT Pattern  SNRE  FE – TT Pattern  Dense  FE – TT Pattern
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larger NAR of ~300:1, the achievable engine Isp is ~900 s. The total engine length is ~6.81 m including the 

retractable nozzle, and the nozzle exit diameter is ~2.26 m. The engine T/Weng is also a little higher at ~3.06. 

 

                 Table 1. Performance Characteristics for “Small-to-Full Size” Graphite Composite Engines 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The performance characteristics for a 25 klbf-class GC engine, similar to that used in NASA’s DRA 5.0, is based 

on an “axial-growth” version of the SNRE [14,16]. It uses the same SNRE FE – TT pattern but the FE length is 

increased from 0.89 m to 1.32 m (the same length used in the Pewee engine). The engine’s performance parameters 

include: Tex ~2790 K, chamber pressure ~1000 psia, hydrogen flow rate ~12.5 kg/s, Isp ~909 s, and T/Weng ~3.42. 

The engine has a nominal power output of ~563 MWt and the corresponding average and peak power densities are 

~3.36 and 5.70 MWt / liter, respectively. The overall engine length is ~8.69 m, which includes an ~2.16 m long, 

retractable radiation-cooled nozzle skirt extension. The corresponding nozzle exit diameter is ~1.89 m. A higher 

chamber pressure is used in this design to help to maintain reasonable nozzle dimensions at the assumed NAR.  

   The engine’s reactor core contains 564 FEs and 241 TTs – the same number found in the SNRE. It also has the 

same reflector thickness and pressure vessel diameter as the SNRE. With its longer fuel elements and tie tubes, 

however, the U-235 fuel loading used in the reactor FEs can be reduced to ~0.25 grams/cm3 thereby lowering the 

inventory of 93% enriched U-235 in the core to just under 37 kilograms. Lowering the fuel loading from ~0.60 to 

0.25 grams/cm3 also allows the FEs to operate at a higher peak fuel temperature of ~3010 K while still staying 

below the melt temperature for composite fuel of ~3050 K. The corresponding increase in the exhaust temperature 

to ~2940 K results in an ~35 second increase in Isp to ~940 s if required to help stretch the available LH2 propellant 

loading to meet mission requirements, or in the case of an emergency to allow a safe return of the crew. 

   Between the two small engine options analyzed – the ~7.5 klbf criticality limited engine and the SNRE options –

the SNRE+ configuration appears more attractive for development, ground testing and flight demonstration. The 

reasons for this are as follows: (1) an earlier DDT&E plan already exists [17] and can be used as a point of 

comparison; (2) the SNRE FE – TT arrangement has 6 FEs surrounding each of TT so the pedestal geometry at the 

bottom of each TT is the same as that used in the larger ~25 klbf-class engine; and (3) both engines use 35 inch long 

FEs so the SNRE will not be much longer than the 7.5 klbf engine. It can therefore be used not only for the FTD 

mission but also for lunar cargo and crewed landing missions, and even human Mars missions (assuming smaller 

individual payload elements and crew size as currently being envisioned in NASA’s “Evolvable Mars Campaign”). 

This could lead to a “one size fits all” approach to NTR development using the SNRE-class GC engine. 
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IV.  NTP Technology Development: Recapture, Fabrication and Testing of Composite Fuel 
    

   As mentioned in the Introduction, recapturing past fuel processing techniques and demonstrating the ability to 

fabricate partial length FEs for testing and performance validation has been the primary focus of the NCPS and 

current NTP project. During the Rover/NERVA program, many thousands of high quality, precision-made FEs were 

produced at LANL, ORNL’s Y-12 Facility, and the Westinghouse Astronuclear Laboratory (WANL). A wealth of 

data was generated on the required processing parameters and specifications, materials of construction, and the 

equipment used in fabricating and coating both particle and composite fuel. These results were documented, in great 

detail, in reports by Taub [5], Lyon [18] and Davidson [19]. 

   Since 2011, researchers at ORNL have been reviewing the literature, procuring hardware, and assembling the 

equipment needed to fabricate and coat heritage GC fuel elements. Lab-scale equipment for FE fabrication is shown 

in Fig. 7 [20]. It includes the extruder, dies for producing initial 4-hole test elements and follow-on 19-hole heritage 

elements, and an element layout tray. Equipment setup has benefited from past “lessons learned” during the 

fabrication of the heavier composite elements. Due to increased friction as the fresh extrusion moved from the die 

along the graphite layout tray, the rear portion of the FE tended to compress and bulge so FE dimensions were wider 

at the back than in the front. By introducing a series of small air holes in the base of the layout tray – a feature 

incorporated in ORNL’s current graphite insert (see Fig. 7) – the GC elements were now able to move on a film of 

air minimizing the sliding contact between the element and tray and eliminating fuel element distortion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Equipment Assembled at ORNL for Extrusion of Composite Fuel Elements 
 

   Composite fuel elements, consisting of uranium carbide, zirconium carbide and graphite matrix materials, were 

produced from a blended mixture of graphite flour, carbon black, ZrC powder, UO2 powder, and thermosetting resin 

(binder) using an extrusion process. The extruded fuel elements were then heat treated to form a “web-shaped 

dispersion” of solid solution UC-ZrC fuel within the graphite matrix material. In addition to reconstituting lab-scale 

fabrication capability, ORNL researchers face another challenge that of duplicating the source materials used to 

produce the composite fuel elements successfully tested in the past. Due to the inability to procure exact matches for 

these materials, substitutions in the fuel formulation must be made and their impact determined through testing. 

   Coating is another key technology that underwent significant development during the Rover/NERVA program. 

The CVD process became quite sophisticated allowing the nineteen 2.4 mm diameter coolant channels in each FE to  
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be coated with NbC tailored in thickness from ~50 - 100 m over the full 1.32 m length of the element. The coating 

material was later changed to ZrC – the current baseline material – because it better adhered to the graphite and had 

more desirable neutronic characteristics and lower fission product diffusion rates.  

   Key parameters important to the coating process are the optimization and control of the coating temperature and 

the reactant species composition as it is flowed through the element. Temperature control was accomplished using a 

multi-zone inductively-heated furnace with the reactant gas flowing from the “cold to hot” end of the element.  In 

order to achieve the desired coating properties over the entire FE length, the coating temperature had to be increased 

incrementally from the inlet to the exit end of the coating furnace to compensate for the depletion of the reactant gas 

as it traveled along the axial length of the fuel element [21,22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. ORNL CVD Coating Furnace, Baseline and Alternative Coating Concepts 
  

   A new “6-zone” CVD coating furnace (with 4 peripheral heating coils per zone) has been set up at ORNL (Fig. 8) 

to demonstrate the ability to deposit tailored thicknesses of the ZrC coating along the FE length [23]. With improved 

fabrication measurement techniques and coating capabilities, better matching of the CTE for the composite fuel and 

ZrC coating can hopefully be achieved as compared to what was possible in the 1970s. It is also envisioned that the 

use of current day technology, including the use of modern computer controlled temperature sensors and electronic 

mass flow controllers, will help improve the CVD coating process so as to further minimize cracking and erosion. 
   Additional coating materials and concepts are also being studied and developed at GRC [24] to help prevent or 

minimize cracking and could be applied if it persists using the baseline ZrC coating. A new, multilayer metallic 

coating architecture has been proposed for application to the “mid-band erosion” area of the FE where cracking was 

observed during the Rover/NERVA program. The new coating approach (shown schematically in Fig. 8) uses 

graded layers of molybdenum-niobium (Mo-Nb) positioned between the graphite matrix material and the outer ZrC 

coating. Its potential advantages are highlighted in Fig. 8. A Mo overlay, effectively used in some Rover/NERVA 

engine tests [4], can also be applied to seal any developing cracks in the ZrC and further help reduce H2 permeation.  

   Lastly, because of its established database, the fuel specifications and production requirements for GC fuel are not 

expected to change significantly. As a result the major portion of the development plan for GC fuel will likely focus 

on validating new production samples and elements and correlating data on them to historical data to increase 

confidence in the fuel’s performance and to reduce programmatic risk. 

 

Advantages of Multilayer Coating Approach:  

• Minimizes ZrC/(U,Zr)C-graphite matrix CTE differences. 

• Ductile compliant metallic layers will accommodate  

  residual stresses. 

• Mo overlay seals cracks in the ZrC coating and  

  reduces H2 permeation. 

• Mo-Nb layers expected to reduce H 2 permeation. 

• Mo2C expected to be a diffusion barrier for carbon. 

Multilayer Metallic Coating Concept  ORNL 6-zone CVD Coating Furnace 
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V.  NTP Ground Test Facility (GTF) Options and ConOps 
 

   Ground test demonstrations of NTP components, subsystems, and the integrated reactor/engine system are a 

necessary precursor to qualifying a system for flight demonstration. In contrast to the “open air” testing conducted 

during Rover/NERVA, current environmental protection (NEPA) standards prohibit any significant release of 

radioactive particulates into the air from a nuclear test facility. As in the past, the preferred and logical location for 

conducting NTR ground tests is the NNSS formerly known as the Nevada Test Site. The Site occupies ~1375 square 

miles and provides a large secure safety zone containing valuable on-site assets and a variety of locations well suited 

for NTP testing. 

   The pros and cons for the different ground test options can best be discussed by considering the scope of activities 

involved in an overall “Concept of Operations” (ConOps) for testing shown in Fig. 9. Fabricating the required 

number of precision fuel elements containing highly enriched U-235 (HEU) will be done at either ORNL’s Y-12 

Facility or by an industry contractor team responsible for building the reactor and engine system. Building up the 

reactor subsystem will involve integrating the core assembly with its peripheral reflector and control drums and its 

placement within the reactor pressure vessel. The hydrogen turbopump assembly, exhaust chamber and truncated 

regenerative-cooled nozzle will then be added to the pressure vessel to complete the engine assembly.  

   This buildup process will likely be performed at the Device Assembly Facility (DAF) located within the NNSS. 

The DAF is a state-of-the-art facility that includes a collection of steel-reinforced concrete test cells connected by a 

rectangular corridor. The entire complex is covered by compacted earth and spans an area of ~100,000 square feet 

(the size of ~11 football fields). The DAF has multiple assembly/test cells designed to handle special nuclear 

materials, plus high bays with multi-ton crane capability sufficient to handle the small engine sizes currently being 

considered. It is envisioned that the DAF will be used as a pre-test staging area for component aggregation, engine 

assembly and “0-power” critical testing prior to being transported to the chosen test location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Possible Concepts of Operation for NTP Ground Testing 

 

   With the potential for radioactive effluent release to the atmosphere with open air testing, future test methods will 

require that the engine exhaust be scrubbed to remove any radioactive contaminants. This can be accomplished in 

one of two ways. The first option is to develop an above ground effluent treatment system (ETS) that would be 

attached to the engine’s nozzle and used to scrub and filter the hydrogen exhaust of any radioactive particulates and 

low-level fission product gases. The hydrogen-rich filtered exhaust would then be burned off in a flare stack. The 

design and technical feasibility of this type of ETS was successfully demonstrated on the NF-1 fuel element test 

reactor [4] at the end of the Rover/NERVA program. Operating at ~44 MWt, NF-1 represents an ~1/4th - 1/10th scale 

demonstration of the ETS that would be needed to test the 7.5 klbf and SNRE-class engines being considered here.    

   Another above ground option, referred to as “full-containment” [25], burns the hydrogen exhaust with additional 

oxygen to create oxygen-rich steam that is then cooled by heat exchangers, converted to water, and collected in large 

storage tanks. Filters and particle traps positioned along the exhaust stream remove the radioactive contaminants 

while the stored water is slowly filtered into retention ponds where it subsequently evaporates. 
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   Both of the above options scale in size with engine thrust level and hydrogen throughput and can therefore become 

quite large and complex increasing the time and cost to build them. The second approach capitalizes on the existing 

geology and infrastructure at three different locations at the NNSS (included in Fig. 9) to help simplify and lower 

the cost of ground testing. The three sites include: (1) several deep (~1200 ft), large diameter (~8 ft) vertical holes 

dug previously for underground nuclear weapons testing; (2) the underground U1a complex; and (3) the P-tunnel 

complex located inside the Rainier Mesa. 

   In the SAFE (Subsurface Active Filtration of Exhaust) concept originally proposed by Howe et al., [26], the 

vertical boreholes and the natural geology of the soil (alluvium) are exploited to provide “in-situ” capture, holdup 

and subsequent filtration of the engine exhaust. Conceptually simple, the engine is enclosed within a steel 

containment structure attached to a concrete slab surrounding the top of the borehole. A seal around the nozzle 

throat extends down to the top of the hole to prevent exhaust gas release to the surface. As the engine fires down into 

the hole, a water or liquid nitrogen spray cools and condenses the exhaust. The pressure builds and eventually 

reaches a level where the amount of gas and water vapor driven into the porous soil and rock equals the mass flow 

of the engine. There is no costly fixed infrastructure. Mobile trailers are used for control and data acquisition and 

tank cars supply the hydrogen propellant and water used during the test. Recent analysis of the SAFE concept and 

the design for a small, non-nuclear, subscale validation test of concept feasibility are reported on elsewhere [3, 27]. 

   A disadvantage of the borehole approach is its “above ground” location that will require increased cost to maintain 

a secured perimeter around the site. These increased security measures are needed to protect the HEU contained 

within the engine and to restrict and/or limit access to the site during engine operation, the post-test cool down 

period, and the subsequent disassembly phase as outlined in Fig. 9. It is envisioned that a “mobile hot cell” unit 

would be used to disassemble and remove an initial sampling of FEs and reactor components from the engine’s 

reactor core for shipment to INL for PIE. The unit would be similar to that shown in Fig. 10 and developed with 

IAEA (International Atomic Energy Agency) funding for the recovery and packaging of Spent High Activity 

Radioactive Sources (SHARS) [28].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  SHARS Mobile Hot Cell Unit with Interior Remote Manipulator Arms  
 

   Over time all of the fuel elements would be removed and transported to INL using existing shipping containers for 

HEU recovery before disposal since very little fuel will be consumed during engine testing. Other reactor and engine 

components can be shipped to INL for evaluation and disposal as well, or disposal at an appropriate NNSS location 

may be possible. The NNSS has two other “less accessible” locations that can help lower the security requirements 

and cost to test there. At both locations, long, large diameter horizontal tunnels would be used for engine testing.  

   The expansive U1a complex is located ~1000 feet below the surface and contains a series of interconnected 

tunnels used in conducting subcritical tests. For use in NTP testing, a new dedicated tunnel would need to be 

excavated to accommodate the expected NTP test conditions. To run the test, hydrogen would be supplied from the 

surface using double-walled piping and a water supply would cool and condense the engine exhaust before it 

penetrates the surrounding porous alluvium soil. A nearby parallel drift would accommodate a portable SHARS-like 

hot cell unit for post-test engine disassembly, FE and component removal and packaging, then transport to the 

surface and on to INL for PIE and disposal.  

   Tunnel testing deep underground can also provide an added measure of safety. Should a serious accident occur 

causing a significant release of fissile material, or conditions preventing safe access to the engine for test personnel, 

a large “quick closing valve” can be activated to entomb the disabled engine in place by sealing off the test tunnel 

from the rest of the complex. Entombment within the tunnel may also be a final disposal option if it is determined 

that the time and cost to ship the engine’s components to INL for HEU recovery and disposal are prohibitive.  
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   Using the P-tunnel complex for NTP testing appears to be a viable option based on preliminary analysis [25]. In 

contrast to the boreholes and U1a tunnels dug primarily in alluvium soil, the P-tunnel walls are composed mostly of 

rhyolite, an extrusive igneous rock containing ~70% SiO2. During NTR testing, these rock walls can provide a large 

surface area for heat dissipation reducing the need for water spray cooling. A heat exchanger can be used to 

condense the exhaust and reduce pressure buildup, and a nitrogen-cooled, charcoal filter can be used to remove any 

low-level fission product gases that might escape the fuel elements and enter the engine’s hydrogen exhaust stream. 

A flare stack positioned at the end of the tunnel and exiting to the surface would burn off excess hydrogen to further 

regulate the tunnel pressure during the test. Radiation detectors would also be used to measure radionuclide 

emissions within the tunnel and in the case of a significant release from failed fuel would activate a “quick closing 

valve” to seal off the flare stack and prevent any release to the atmosphere.  

From a security and operational standpoint, testing in the P-tunnel complex is an attractive option because it 

has more direct access, only one entry portal to protect, and the surrounding Mesa prevents any other access to the 

tunnel and its interior assets. The complex is also less developed and utilized than U1a so the additional security 

measures that would be required for NTP testing will have less impact than if testing were to be conducted at U1a. 

Lastly, the tunnel already exists so the cost of digging a new one is eliminated. 

 

VI.  Candidate FTD Mission: A “Single-Burn Lunar Flyby” 

 
   To reduce the cost of the FTD mission, a simple “1-burn” lunar flyby mission is assumed. The small NTP stage 

(SNTPS) also maximizes the use of existing flight proven liquid rocket and stage components to further ensure 

affordability. The flight stage uses the small criticality-limited 7.5 klbf engine discussed in Section II. Its key 

features and performance characteristics are provided in Table 1 and a layout of the engine with dimensions is 

shown below in Fig. 11. The engine uses an RL10-class LH2 turbopump and a lightweight, radiation-cooled 

composite skirt that is retracted during launch to maximize the remaining shroud volume for a small payload and the 

stage’s LH2 tank. When retracted, the small engine (minus the forward radiation shield) has approximately the same 

length as the RL10B-2 engine used on the Delta Cryogenic Second Stage (DCSS) [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 11. Engine Layout / Features for Small NTR Engine and Stage 
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   The SNTPS uses the same LH2 tank as that used on the DCSS so it has the same outer diameter but has a shorter 

overall length as shown in Fig. 11. An additional barrel section can be added to the LH2 tank to accommodate more 

propellant for higher energy missions [29]. The SNTPS also utilizes other flight proven stage components found on 

the DCSS (e.g., systems for pressurization, attitude control, avionics and power, plus interstage and thrust structure). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 12. Key Mission Phases / Features of the Lunar Flyby FTD Mission 

 
   The FTD mission assumes the SNTPS is launched in an inverted orientation within the 5 m fairing of a Delta 4 M 

(5,4) and placed into low Earth orbit (LEO) using the Delta 4 DCSS as shown in Fig. 12. The Atlas 5 launch system 

with its 77 and 87 foot fairings can also be used and provides more payload volume and better lift capability to LEO. 

After separation from the DCSS, the SNTPS deploys its photovoltaic array and at the appropriate time fires its small 

engine to begin the 3-day journey to the Moon. Data on engine performance is transmitted back to Earth and 

evaluated during the outbound transit. Upon reaching the Moon, a lunar gravity assist maneuver is executed that 

places the SNTPS on a trajectory into deep space for disposal. As validation of a successful mission, the SNTPS 

might also transmit a final farewell picture – possibly of Earthrise with the lunar landscape in the foreground. 
   For this particular mission the SNTPS carries ~3.23 t of LH2 propellant and uses ~2.97 t during its single trans-

lunar injection (TLI) maneuver. With ~7.52 klbf of thrust and a Isp of ~894 s, the hydrogen flow rate is ~3.82 kg/s 

and the total engine burn time is ~12.96 minutes. The U-235 burn-up for this mission is minuscule. With a nominal 

power output of ~157 MWt and assuming ~1.2 grams consumed per megawatt-day of engine operation, the amount 

of U-235 consumed is ~1.70 grams which is ~ 0.0062% of the total ~27.5 kg contained in the small engine. 

 

VII. Notional Schedule to Flight Details 

Assumptions Made in Schedule Formulation 

   In FY’14, a preliminary development schedule / DDT&E plan was produced by GRC, DOE and industry for the 

AES program. It assumed a 10-year duration during which time a ground tested and qualified engine would be 

readied for flight demonstration around the ~2025 timeframe. By necessity, the project would be a success-oriented, 

high-risk activity requiring an immediate start and dedicated financial commitment by NASA. It also assumed the 

following:  (1) a streamlined management and acquisition strategy; (2) use of GC fuel; (3) an immediate scale up in 

FE  production levels before verification of  all  fuel processing activities were completed; (4)  utilization of existing 
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facilities (e.g., DAF) and borehole or tunnel testing at the NNSS; (5) starting NEPA (National Environmental Policy 

Act) and launch safety analyses; (6) identifying fuel and reactor transportation requirements; and (7) initiating 

facility modifications at the Cape required for assembly, test, and launch operations (ATLO). 

   The schedule also assumed co-location of a portable hot cell unit (like the mobile SHARS unit) near the site where 

testing is to occur. The unit would be a “turnkey” procurement and used to disassemble the reactor after testing to 

extract a sampling of FEs and reactor components for shipment to INL for PIE as discussed in Sect IV. Afterwards, 

the unit would package smaller groupings of fuel and reactor components for shipment in existing casks to a DOE 

facility for processing and disposal thus avoiding the added expense and time to develop a new “Cat 1” container. 

   Lastly, it was assumed that the GTD project would build and test two units; the first being an engineering 

reactor/engine test article with ~90% design fidelity in 2023 and the second unit being a qualification engine with 

~100% design fidelity in 2024. The final flight unit – identical to the qualification unit – would be launched in 2025. 

Parallel Activities and Other Important Considerations in Schedule Development 

   A number of activities need to occur before a SNTPS can be launched. These include: (1) Fuel and reactor 

materials development and qualification; (2) Reactor and engine design; (3) GTF design, construction and checkout; 

(4) Ground test article development, fabrication and demonstrations; (5) Flight system design and fabrication; (6) 

Transportation (for both the ground test articles and flight unit); (7) Engine, stage and launch vehicle integration and 

checkout at the Cape; and then (8) Launch. 

   Reactor design can be performed in parallel with fuel development and qualification so that reactors can be 

fabricated as soon as acceptable reactor fuel is available and the necessary facilities and test infrastructure are in 

place and available. Three primary activities must therefore begin in the initial phase of a flight development 

program: (1) fuel development and qualification; (2) integrated reactor, engine and stage design; and (3) GTF 

selection, design, and construction. Fuel development and qualification will include fuel performance validation and 

documentation of the fuel fabrication process parameters and specifications, required source materials and 

equipment necessary to insure reproducibility. With this information private sector vendors can be engaged to scale 

up fuel fabrication from lab-scale single element extrusions to an established fuel fabrication line capable of the 

producing the large numbers of HEU fuel elements needed for the ground test articles and the flight engine. 

   The availability of required facilities is another important consideration. In addition to the GTF and fuel 

fabrication facility, a number of other nuclear and nuclear-related test facilities will be required to successfully 

execute this program. Facilities for conducting cold and hot critical experiments and establishing component 

tolerance limits to neutron and gamma radiation will need to be identified at existing DOE facilities or new 

analogues will have to be built. Other likely facilities include reactor component and control system test facilities, as 

well as, simulator facilities to help train and prepare the operators who will be conducting the actual engine ground 

testing.  

Schedule Task Activities and Timing 

   Key task activities associated with the ground and flight technology demonstration schedule are shown in Fig. 13. 

The schedule assumes GC fuel is selected as the lead fuel option consistent with the IRP’s recommendation and the 

AES program’s endorsement of this fuel option this past February. As discussed above, there are three activities that 

start immediately. The first is GC fuel and coating development and qualification. It uses separate effects testing 

involving NTREES and irradiation testing conducted in either the High Flux Isotope Reactor (HFIR) at ORNL or 

the ATR at INL. Once qualified, fuel element fabrication begins using HEU at either ORNL’s Y-12 Facility or an 

industry contractor. Second is engine design and development. This work will be performed by a government/ 

industry contractor team who will provide the necessary design details needed for the mission concept, system 

requirements, preliminary and critical design reviews that occur over the next 4 years. Third is GTF concept 

evaluation and selection between the borehole and tunnel options (at either P-tunnel or the U1a complex).  

   New facility development, whether for a GTF or fuel fabrication facility, is typically a long lead item within DOE 

involving a 5-year design, construction and checkout period. DOE will need to submit a budget request by Critical 

Decision-0 (CD-0) before starting conceptual design, preparing NEPA documentation, and seeking permit approval 

from the state with regulatory authority. This information provides the basis for continuing with facility preliminary 

design (CD-1). Approval for final design and construction start occurs during CD-2 and CD-3, respectively. 

Operator training, facility qualification and Operational Readiness Review (ORR) occur during CD-4. Prior to 

preliminary design of the GTF, non-nuclear subscale validation testing of the selected concept may be required. 

Validation testing of the SAFE concept is shown as an example in Fig. 13. 
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   Design and development activities on the stage start after engine design and development is underway. The 

DDT&E effort on the non-nuclear engine and stage components is not expected to be a pacing element in the 

development schedule since many of these components and subsystems already exist and have flown in space as 

discussed Section VI. The main technical issue is material and component tolerance to a radiation environment for 

short periods and whether selective use of particular types of materials may be required. Candidate fabrication 

materials for NTP TPAs, nozzles, controls, valves and instrumentation were identified and documented by Aerojet 

and demonstrated during extensive testing on the NERVA program’s NRX-XE experimental engine in 1969 [4]. 

   In parallel with GTF qualification, ORR and start of operations, components for the first engineering ground test 

article will be fabricated and sent to DAF for assembly, then installed and tested at the GTF in 2023. The 

installation, test and post-test evaluation process is expected to take ~6-9 months. Similar fabrication and assembly 

of the second test article, the qualification unit, will occur in 2023 followed by its installation and testing in 2024. 

   After the ground test campaign is finished, program focus will shift to the FTD mission and activities at the Cape. 

Fabrication and assembly of the reactor subsystem for the flight unit would be done at the industry contactor. The 

unit will then be shipped to the Cape for acceptance testing and integration with its non-nuclear engine components, 

the flight stage and launch vehicle. 

  The launch approval process will require preparation of a FSAR (Final Safety Analysis Report) and a SER (Safety 

Evaluation Report) by DOE and INSRP (Interagency Nuclear Safety Review Panel), respectively, along with 

Operational and Mission Readiness Reviews by NASA before approval to proceed with the mission is provided by 

the White House Office of Science and Technology Policy (OSTP) leading to a launch in late 2025. 

   After the GTD tests and FTD mission, other NTP precursor missions are possible as shown earlier in Fig. 1. 

Candidate missions include lunar missions in the late 2020’s followed by Mars cargo flights in the early 2030’s and 

crewed orbital missions to Mars and its moons around the 2035 timeframe. 

 

VIII. Summary and Concluding Remarks 
 

   Today, NASA is providing modest funding for a small but focused technology development and demonstration 

effort that it hopes will lead to the successful ground testing and eventual flight of a NTR engine. Following the IRP 

recommendation and AES program endorsement of graphite composite fuel as the “lead fuel” option, the NTP 

project is now focused on fabricating and testing GC fuel elements. An ~16 inch partial length FE with 4-holes and 

ZrC coating has been fabricated by ORNL and will undergo non-nuclear “thermal cycling” tests in NTREES in 

FY’15 – a major project milestone. NTREES testing of a coated 19-hole element containing depleted uranium will 

be conducted next, followed by irradiation testing in a DOE reactor in the FY’16-17 timeframe.  

   In addition to recapturing and demonstrating GC fuel fabrication and coating processes using current day 

equipment and source materials, NASA and DOE are also using SOTA computational tools to develop conceptual 

designs for several small engines – one a criticality limited 7.5 klbf engine and the other a recently updated version 

of the SNRE producing just under 16.7 klbf of thrust. Both engines are candidates for ground testing and flight 

demonstration, but the SNRE-class engine has greater potential to support future human missions as well. 

   In the past year and a half, NASA and DOE personnel have twice traveled to the NNSS, visiting the DAF and 

touring candidate locations for NTP ground testing including a vertical borehole, and horizontal tunnels at the 

underground U1a and P-tunnel complexes. The pros and cons of testing at each of these locations have been 

discussed and a Concept of Operations for ground testing has been outlined.  

   The preliminary DDT&E plan and schedule for affordable ground and flight-testing small NTP systems developed 

by GRC, DOE and industry has been presented. The assumptions and important considerations used in developing 

the schedule and the key task activities included in it have also been discussed. 

   The keys to affordability include using: (1) proven “graphite composite” fuel with its well-documented fabrication 

processes and large database; (2) “separate effects” testing (e.g., NTREES and irradiation) to qualify the fuel and 

coatings; (3) SOTA “benchmarked” numerical models to design, build and operate the engine computationally; (4) 

small engine designs utilizing a “common” fuel element that is scalable to larger thrust levels when and if required; 

(5) existing DOE facilities and infrastructure at the NNSS (e.g., DAF, boreholes or tunnels); and (6) flight-proven, 

non-nuclear engine and stage hardware to the maximum extent possible for the FTD mission. 

   Although not discussed in this paper, a rough order of magnitude (ROM) cost estimate was made for the GTD 

tests and FTD mission. It is premature, however, to discuss cost at this time since the AES program has just 

requested a more in-depth requirements assessment and cost estimate be made by the NTP project over the next two 

years. The information presented here will provide a good starting point for that assessment. 
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