Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment

51st AIAA Joint Propulsion Conference July 27, 2015

H J. Oberth

Mark Stewart VPL at NASA Glenn Research Center Jeff Moder NASA Glenn Research Center

Outline

- Background and Motivation:
 - Cryogenic fluid behavior in flight conditions
 - Long-term, in-space storage of cryogenic propellants for future exploration missions
- Problem Setup:
 - Geometry & grid
 - Fluent settings
 - Fluid properties (N₂): temperature, pressure dependent?
 - UDF for condensation / evaporation
 - UDF for non-inertial reference frame
 - Time-dependent acceleration and Bond number
 - Boundary conditions
 - Procedure for initial conditions
- Comparison with experimental data:
 - Initial thermal profile
 - Visual comparison with high-speed movie
 - Pressure data: balance of evaporation and condensation
 - Net heat transfer/boiling heat transfer rate
 - Comparison with temperature sensor data

Background & Motivation

- Background:
 - LN2 tank in 2010 low-g parabolic aircraft campaign
 - Significant condensation, evaporation, & boiling
 - Simulation compared to one low-g parabola
- Motivation:
 - Cryogenic fluid behavior in flight conditions
 - Long-term, in-space storage of cryogenic propellants for future exploration missions

Geometry & Grid

- 3-Dimensional grid, 360 degree sector
- Fluid Grid: 569,110 Cells
 - In interior, uniform, structured grid
 - 1 mm resolution
- Solid Grid: 685,858 Cells
 - Unstructured grid
 - Variable resolution
- Thermal isolation at joint, sealing gasket
- Post mounted temperature sensors, not simulated
- Currently, no refinement
- Partitioned for 16 or 32 processors
 - Fluid tank dimensions:
 - Radius: ~3 cm
 - Height : ~10 cm
- Slosh frequency:
 - Observed ~4 Hz
 - Calculated 5.0 Hz

Geometry & Grid

Fluent Setup for Simulations

- Simulations performed using ANSYS Fluent version 13;
- 3D grid of fluid and solid regions
- Mass, momentum, energy, turbulence PDEs
- Compressible, ideal gas; Boussinesq liquid
- Fluid properties of nitrogen for fluid viscosity, thermal conductivity, specific heat, latent heat of vaporization, surface tension at 77.244K, 1 bar from webbook.nist.gov/chemistry/fluid
- Solid: temperature dependent density, specific heat, and thermal conductivity from CNES for inox (stainless steel), aluminum, and sapphire
- Volume of Fluid (VOF) for 2-phase flow
- k- ω SST turbulence model of Menter et. al. (turbulent damping = 10)
- UDF for mass transfer at liquid/ullage interface, boiling, and gas phase condensation
- UDF for non-inertial acceleration,
- Boundary conditions on later slide,
- Second order upwind scheme was used for discretization of the mass, momentum, energy, and turbulence, (cell values)
- PISO scheme was used for the pressure-velocity coupling (cell values)
- Least Squares Cell Based scheme was used for the gradient calculations (face values)
- PRESTO! scheme was used for the pressure interpolation (face values)
- First order implicit time discretization was used, also bounded second order implicit
- Time step = 1e-04 seconds
- Extensive instrumentation of the simulation

Temperature & Pressure Dependence of Fluid Properties

- Initially used constant properties for μ , κ , C_p , at 77.244K, 1 bar, but ~10% error
- Range of temperature and pressure: 70-110 K; 1 3 bar
- Well represented by simple polynomial in temperature:
 - Viscosity μ, (vapor & liquid)
 - Thermal conductivity κ (vapor & liquid)
 - Surface tension, γ
 - C_p liquid
- Varies with both temperature and pressure:
 - C_p gas
 - Heat of vaporization / condensation
 - Z varies ~8% (Ideal gas assumption)

Evaporation/Condensation UDF

- Mass transfer and heat of vaporization/condensation
- Based on Hertz-Knudsen-Schrage equation: m
 - Derived from Maxwell dist'n

$$n_{net} = \frac{2}{2 - \sigma_{cond}} \sqrt{\frac{MW_{vap}}{2\pi R_u}} \left(\sigma_{evap} \frac{P_{sat}(T_{liq})}{\sqrt{T_{liq}}} - \sigma_{cond} \frac{P_{va}}{\sqrt{T_v}} \right)$$

kg/s-m² Evaporation is +ve

- Assume: $\sigma_{cond} = \sigma_{evap}$; $T_{vap} = T_{liq}$;
- Constant(σ) * ($P_{sat}(T) P$)/sqrt(T)/ length_scale for local P, T
 - Enforces saturation conditions on interface
- UDF Define_Adjust() calculates mass transfer; UDF Define_Mass_Transfer() applies
- Requires kg/s-m³, hence length_scale = sqrt(1/|grad c|²), c is VOF fraction
- Different *situations*, different accommodation coefficients:
 - Interface condensation, $\sigma = 1.0 \times 10^{-4}$ is 'best' fit
 - Interface evaporation, $\sigma = 1.0 \times 10^{-4}$ is 'best' fit
 - Boiling (liquid phase evap), $\sigma = 5.0 \times 10^{-3}$ is 'plausible' fit
 - Gas phase condensation, $\sigma = 1.0 \times 10^{-4}$ is used
- Boiling—vaporization away from a liquid/vapor interface:
 - Superheat criteria in each cell: $T_{max} T_{sat}(P) > 5 K$ T_{max} is max in cell (walls too)
 - Dry boiling cut-off
- *P_{sat}(T)* by curve fit from Reynolds, *Thermodynamic Properties in SI*
- T_{sat}(P) curve fit to NIST data

Non-Inertial Reference Frame UDF

- Non-inertial reference frame accounts for:
 - Linear acceleration of aircraft, **a**
 - Angular rotation, $\boldsymbol{\omega}$, and angular acceleration, $\boldsymbol{\alpha}$ (not present)

 $\vec{a}_{cg} + 2\vec{\omega} \times \vec{v_r} + \dot{\vec{\omega}} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$

- In general, piece-wise linear fit to a, ω, v_r samples
- Here, acceleration, a, sampled at 2 Hz, 10 Hz
 - Two components: a_x , a_z ; assume a_y = zero
 - Piece-wise linear fit to supplied a_x , a_z
 - Initial conditions: steady acceleration a_x =-16.5 m/s², a_y =0, a_z =-1.93 m/s²
- UDF Define_Source adds terms to RHS of momentum equations as ρ a, (kg m²/s²), and RHS of energy eqn. as ρ a•v, (kg m³/s³)
- Fluent has trouble with microgravity
 - Issues at O(a/g) ~ 10⁻⁶
 - No issues at O(a/g) $\sim 10^{-5}$

Simulation Conditions: Bond Number

Boundary Conditions

- Heat fluxes total ~4 W
- Assumed constant on surface of each part
- Due to radiation & conduction
- Liquid-to-vapor contact angle: 5 degrees
- Initial constant acceleration:
 - $a_x = -16.4993 \text{ m/s}^2$; $a_x/g = -1.682$
 - a_y = 0.
 - $a_z^{'} = -1.9325 \text{ m/s}^2;$ $a_z/g = -0.197$
- Initial interface
 - Position: ~60 mm from bottom
 - Angle: from initial acceleration

Initial Thermal Conditions

- Initial conditions by transient fluidthermal simulation
 - Constant gravity
 - 90 s with time step of 4.0x10⁻⁴ s
- Thermal isolation at joints

Temperature & Heat Flux: What & Why?

- Distribution Heat Transfer: surface boiling, departure of bubble, condensation
 - Heat transferred into well-mixed liquid with high heat storage capacity

Section 2: Comparison with Experimental Data

- Initial temperature profile
- Visual comparison with high-speed movie
- Pressure data: balance of evaporation and condensation
- Net heat transfer/boiling heat transfer rate
- Comparison with temperature sensor data

Initial Thermal Conditions

30. K	ĴN t12a⊕	Simulation Temperature, T-T ₀ (K)	Percentage Difference (%)
25	Top Lid Center	r 31.4	
25.	Top Lid Edge	30.0	
	Top Lid Side	29.6	
20.	t12e 🕀 t12a	30.4	0.3
	t12b	15.2	3.4
15	t12g t12c	4.4	0.9
15.	t12d	4.2	0.9
	t12j 🔶t12e	3.5	0.0
10.	t12f	3.4	-0.1
	t12I t12g	3.3	-0.2
	t12h	3.3	-0.2
5.	t12i	3.2	-0.2
	t12j	3.0	-0.3
0	t12k	2.6	-0.1
0.	t12l	2.6	0.4
	Bottom Lid Center	1.6	

- Discrepancy near t12b in high temperature gradient: gasket modeling?
- Discrepancy near t12l and lower lid: specified heat fluxes?

Initial Re-orientation of Surface

00:14 in data

T=93.5 s in CNES_5C_7

National Aeronautics and Space Administration

Heavy Boiling Phase with Condensation and Transit

00:26 in data

T=96.75 s in CNES_5C_7

Condensation and Evaporation: Both Large, Almost Cancel

Pressure Evolution

Internal Energy: A Measure of Heat Transfer

Is Boiling Heat Transfer Rate Correct?

Results: Wall Temperatures

Results: Temperature Sensor T12G

Fluid Temperature on Midplane

Results: Temperature Sensor T12A

NASA

Temperature Sensors: Dry-to-Wet, Wet-to-Dry

- Diode sensors time constant: τ = 0.1 s
- 95% in 3 time constants, τ
 - Hot gas exposure duration is 0.3 – 0.5 s (one-way)
 - Wet-to-dry transition includes a liquid film that must vaporize, before gas
 - Wet-to-dry time delays observed experimentally

Sensors: Wet-to-Dry With Drainage

- Temperature discrepancy between T12a sensor (top) and simulation
- After low gravity phase (final re-orientation), as lid should be heating vapor to create a stable thermal stratification
- Experimental geometry is different: fill line and valve
- Wet-to-dry transition complicated by drainage?
- Drainage of liquid visible, in experiment, 2 s after final re-orientation
- Some simulations shows waves in thermal stratification, others do not

Summary

- Presentation: setup of Fluent and comparison with experimental results
 - Initial temperature profile
 - Visual comparison with high-speed movie
 - Pressure data
 - Net heat transfer/boiling heat transfer rate
 - Comparison with temperature sensor data
- Generally, good agreement with experimental data
- Evidence for low sensitivity of wet-to-dry temperature sensors
- Limitations of boiling model
- Limitation in prediction of condensation / evaporation
- Future work:
 - Further analysis of thermal layers near fluid/vapor interface
 - Grid resolution studies

