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Outline
• Background and Motivation:

• Cryogenic fluid behavior in flight conditions
• Long-term, in-space storage of cryogenic propellants for future exploration missions

• Problem Setup:
• Geometry & grid
• Fluent settings
• Fluid properties (N2): temperature, pressure dependent?
• UDF for condensation / evaporation
• UDF for non-inertial reference frame
• Time-dependent acceleration and Bond number
• Boundary conditions
• Procedure for initial conditions

• Comparison with experimental data:
• Initial thermal profile
• Visual comparison with high-speed movie
• Pressure data: balance of evaporation and condensation
• Net heat transfer/boiling heat transfer rate
• Comparison with temperature sensor data
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Background & Motivation

• Background:
• LN2 tank in 2010 low-g parabolic aircraft campaign
• Significant condensation, evaporation, & boiling
• Simulation compared to one low-g parabola

• Motivation:
• Cryogenic fluid behavior in flight conditions
• Long-term, in-space storage of cryogenic propellants for 

future exploration missions
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Geometry & Grid
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• 3-Dimensional grid, 360 degree sector
• Fluid Grid: 569,110 Cells

• In interior, uniform, structured grid
• 1 mm resolution

• Solid Grid: 685,858 Cells
• Unstructured grid
• Variable resolution

• Thermal isolation at joint, sealing gasket
• Post mounted temperature sensors, not 

simulated
• Currently, no refinement
• Partitioned for 16 or 32 processors

• Fluid tank dimensions:
• Radius: ~3 cm
• Height : ~10 cm

• Slosh frequency:
• Observed ~4 Hz 
• Calculated 5.0 Hz

Joints
(Thermally 
Insulated)

X

Z
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Geometry & Grid
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Geometry & Grid
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Fluent Setup for Simulations
• Simulations performed using ANSYS Fluent version 13; 
• 3D grid of fluid and solid regions
• Mass, momentum, energy, turbulence PDEs
• Compressible, ideal gas; Boussinesq liquid
• Fluid properties of nitrogen for fluid viscosity, thermal conductivity, specific heat, latent heat 

of vaporization, surface tension at 77.244K, 1 bar from webbook.nist.gov/chemistry/fluid
• Solid: temperature dependent density, specific heat, and thermal conductivity from CNES for 

inox (stainless steel), aluminum, and sapphire
• Volume of Fluid (VOF) for 2-phase flow
• k- SST turbulence model of Menter et. al.   (turbulent damping = 10)
• UDF for mass transfer at liquid/ullage interface, boiling, and gas phase condensation
• UDF for non-inertial acceleration,
• Boundary conditions on later slide,

• Second order upwind scheme was used for discretization of the mass, momentum, energy, 
and turbulence, (cell values)

• PISO scheme was used for the pressure-velocity coupling (cell values) 
• Least Squares Cell Based scheme was used for the gradient calculations (face values)
• PRESTO! scheme was used for the pressure interpolation (face values)
• First order implicit time discretization was used, also bounded second order implicit
• Time step = 1e-04 seconds
• Extensive instrumentation of the simulation
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Temperature & Pressure Dependence of Fluid Properties
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• Initially used constant properties for μ, κ, Cp, at 77.244K,  1 bar,  but ~10% error

• Range of temperature and pressure:          70-110 K;            1 – 3 bar

• Well represented by simple polynomial in temperature:

• Viscosity μ, (vapor & liquid)
• Thermal conductivity κ (vapor & liquid)
• Surface tension, γ
• Cp liquid

• Varies with both temperature and pressure:

• Cp gas
• Heat of vaporization / condensation
• Z varies ~8%   (Ideal gas assumption)
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• Mass transfer and heat of vaporization/condensation

• Based on Hertz-Knudsen-Schrage equation:

• Derived from Maxwell dist’n

kg/s-m2 Evaporation is +ve
• Assume:

• Constant(σ) * (Psat(T) – P)/sqrt(T)/ length_scale for local P, T

• Enforces saturation conditions on interface

• UDF Define_Adjust() calculates mass transfer; UDF Define_Mass_Transfer() applies
• Requires kg/s-m3, hence length_scale = sqrt(1/|grad c|2), c is VOF fraction

• Different situations, different accommodation coefficients:
• Interface condensation,      σ = 1.0x10-4 is ‘best’ fit
• Interface evaporation, σ = 1.0x10-4  is ‘best’ fit
• Boiling (liquid phase evap), σ = 5.0x10-3  is ‘plausible’ fit
• Gas phase condensation,    σ = 1.0x10-4  is used

• Boiling—vaporization away from a liquid/vapor interface:  
• Superheat criteria in each cell:  Tmax – Tsat(P) > 5 K        Tmax is max in cell (walls too)
• Dry boiling cut-off

• Psat(T) by curve fit from Reynolds, Thermodynamic Properties in SI
• Tsat(P) curve fit to NIST data

Evaporation/Condensation UDF
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Non-Inertial Reference Frame UDF
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• Non-inertial reference frame accounts for:
• Linear acceleration of aircraft, a
• Angular rotation, ω, and angular acceleration, α (not present)

• In general, piece-wise linear fit to a, ω, vr samples

• Here, acceleration, a, sampled at 2 Hz, 10 Hz
• Two components: ax, az;   assume ay= zero
• Piece-wise linear fit to supplied ax, az

• Initial conditions: steady acceleration
ax=-16.5 m/s2,   ay=0,   az=-1.93 m/s2

• UDF Define_Source adds terms to RHS of 
momentum equations as ρ a, (kg m2/s2), and 
RHS of energy eqn. as ρ av,   (kg m3/s3)

• Fluent has trouble with microgravity
• Issues at O( a/g ) ~ 10-6

• No issues at O( a/g ) ~ 10-5
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Simulation Conditions: Bond Number

• Acceleration due to gravity at 10 Hz supplied by CNES
• 2 components: gx, gy

Bond number:
• Range [ 0.3, 6. ]
• Mean 2.
• O(1) for 10 s
• Surface tension forces/ 

body forces
• Eötvös number
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Boundary Conditions

Inox
(Stainless

Steel)

Aluminum

Sapphire

• Heat fluxes total  ~4 W
• Assumed constant on surface of each part
• Due to radiation & conduction

• Liquid-to-vapor contact angle: 5 degrees

• Initial constant acceleration:
• ax = -16.4993 m/s2;     ax/g = -1.682
• ay = 0.
• az = -1.9325 m/s2;       az/g = -0.197

• Initial interface 
• Position:  ~60 mm from bottom
• Angle: from initial acceleration

Cryo Cooler

~60 mm

Cross Section
Colored by

Temperature
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Initial Thermal Conditions

• Initial conditions by transient fluid-
thermal simulation
• Constant gravity
• 90 s with time step of 4.0x10-4 s

• Thermal isolation at joints
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Boiling

Temperature & Heat Flux: What & Why? 

• Vapor and sealing gasket create insulation (high temperature gradient)
• Inox lid heats up in high-g interval with vapor at top
• With low-g, re-orientation, liquid impinges on hot lid, and boils
• Heat Transfer: surface boiling, departure of bubble, condensation
• Heat transferred into well-mixed liquid with high heat storage capacity

Initial Heat Flow Heat Flow in Re-Orientation

Initial
Temperature
Distribution
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Section 2: Comparison with Experimental Data

• Initial temperature profile

• Visual comparison with high-speed movie

• Pressure data: balance of evaporation and condensation

• Net heat transfer/boiling heat transfer rate

• Comparison with temperature sensor data
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Initial Thermal Conditions

t12l

t12j

t12g

t12e

Simulation
Temperature,

T-T0

(K)

Percentage
Difference

(%)

Top Lid Center 31.4

Top Lid Edge 30.0

Top Lid Side 29.6

t12a 30.4 0.3

t12b 15.2 3.4

t12c 4.4 0.9

t12d 4.2 0.9
t12e 3.5 0.0
t12f 3.4 -0.1
t12g 3.3 -0.2

t12h 3.3 -0.2

t12i 3.2 -0.2
t12j 3.0 -0.3
t12k 2.6 -0.1

t12l 2.6 0.4

Bottom Lid  
Center

1.6

• Discrepancy near t12b in high temperature gradient: gasket modeling?
• Discrepancy near t12l and lower lid: specified heat fluxes?
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Initial Re-orientation of Surface

T=93.5 s in CNES_5C_700:14 in data
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Heavy Boiling Phase with 
Condensation and Transit

T=96.75 s in CNES_5C_7

00:26 in data
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Condensation and Evaporation: Both Large,  Almost Cancel
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Boiling

Heat Build-Up

Vapor
Condensation



National Aeronautics and Space Administration

www.nasa.gov

Pressure Evolution
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σevap = σcond = 2.x10-4

σevap = σcond = 1.x10-4
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Internal Energy: A Measure of Heat Transfer
Is Boiling Heat Transfer Rate Correct?
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Estimated 
ΔInternal

Energy from 
Experiment:

1050 J
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Results: Wall Temperatures 
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Results: Temperature Sensor T12G
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Fluid Temperature on Midplane
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Results: Temperature Sensor T12A
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Temperature Sensors: Dry-to-Wet, Wet-to-Dry 

26

T12A
~0.2 s
~0.1 s

Dry-to-Wet

T12B
~0.2 s
~0.1 s

Dry-to-Wet

T12C
~1.0 s

0.3-0.5 s
Dry-to-Wet

T12E
~1.5 s
~0.5 s

Wet-to-Dry

T12I
~1.5 s
~0.3 s

Wet-to-Dry

• Diode sensors time 
constant:  τ = 0.1 s 

• 95% in 3 time constants, τ

• Hot gas exposure duration is 
0.3 – 0.5 s     (one-way)

• Wet-to-dry transition 
includes a liquid film that 
must vaporize, before gas

• Wet-to-dry time delays 
observed experimentally
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Sensors: Wet-to-Dry With Drainage
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• Temperature discrepancy between T12a sensor (top) and simulation

• After low gravity phase (final re-orientation), as lid should be heating 

vapor to create a stable thermal stratification

• Experimental geometry is different: fill line and valve

• Wet-to-dry transition complicated by drainage?

• Drainage of liquid visible, in experiment, 2 s after final re-orientation 

• Some simulations shows waves in thermal stratification, others do not

T12a
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Summary
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• Presentation: setup of Fluent and comparison with experimental results
• Initial temperature profile
• Visual comparison with high-speed movie
• Pressure data
• Net heat transfer/boiling heat transfer rate
• Comparison with temperature sensor data

• Generally, good agreement with experimental data

• Evidence for low sensitivity of wet-to-dry temperature sensors

• Limitations of boiling model

• Limitation in prediction of condensation / evaporation

• Future work:
• Further analysis of thermal layers near fluid/vapor interface
• Grid resolution studies
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