

Calcium-Magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

Valerie L. Wiesner and Narottam P. Bansal Materials & Structures Division NASA Glenn Research Center

11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications Vancouver, B.C., Canada June 18, 2015

Environmental Barrier Coatings for Ceramic Matrix Composites

- Improve air-breathing turbine efficiency by replacing metalbased components with ceramic matrix composites (CMCs)
- Environmental barrier coatings (EBCs) protect CMC components from oxidation and corrosion in hot section of gas turbine engines
 - Rare-earth silicates

Molten CMAS Damage to Protective Coatings

- Particulates (i.e. sand, volcanic ash) ingested by engine melt into <u>Calcium-Magnesium-AluminoSilicate (CMAS)</u> glass above 1200°C
- Molten CMAS degrade EBCs

Eyjafjallajökull volcano eruption in Iceland (2010)

Dust storm in Phoenix, Arizona (2014)

Need EBC materials resistant to CMAS glass attack above >1200°C

USA Today, "Massive dust storm sweeps through Phoenix" (2014)

High-Temperature Interactions between EBC Material and CMAS Glass

Objective:

 Evaluate thermo-chemical interactions between yttrium disilicate (Y₂Si₂O₇) EBC material and a desert sand glass at temperatures 1200°C-1500°C

Yttrium Disilicate (Y₂Si₂O₇)

- Comparable coefficient of thermal expansion to siliconbased CMCs
- Water vapor resistance
- Desert Sand (CMAS) Glass
 - Actual sand sample
 - Relevant CMAS composition to aviation

¹ N.S. Jacobson, Journal of the American Ceramic Society, **97**[6] 1959-1965 (2014). ² N.P. Bansal, S.R. Choi, Ceramics International, **41**[3, Part A] 3901-3909 (2014).

Aircraft engine ingests sand upon take-off

Preparation of Desert Sand Glass

- As-received desert sand melted into glass
 - Heated at 10°C/min to 1550°C (1h)
 - Quenched melt in water
 - Grind glass frit in planetary mill zirconia milling media
 - Pass through sieve (<297 μm)

 Chemical analysis of glass by inductively coupled plasma atomic emission spectrometry (ICP-AES)

Composition (mol.%)	CaO	MgO	Al_2O_3	SiO ₂	K ₂ O	Fe ₂ O ₃
Desert sand glass	27.8	4	5	61.6	1	0.6
Common CMAS glass ^{1,2}	33	9	13	45	-	-

- Desert sand glass comprised of CMAS and trace oxides

¹ S. Krämer, J. Yang, C.G. Levi, C.A. Johnson, Journal of the American Ceramic Society, 89 (2006) 3167-3175.

² B.J. Harder, J. Ramìrez-Rico, J.D. Almer, K.N. Lee, K.T. Faber, Journal of the American Ceramic Society, 94 (2011) s178-s185.

Evaluate sand (CMAS) glass interactions with Y₂Si₂O₇ material

CMAS glass on hot-pressed Y₂Si₂O₇ substrate

- Load substrate with CMAS glass ~35 mg/cm²
- 20h heat treatments at 1200°C, 1300°C, 1400°C and 1500°C in air
- Evaluate microstructure and composition of Y₂Si₂O₇/CMAS glass interface with SEM/EDS and EPMA

Y₂Si₂O₇ substrate loaded with CMAS glass after heat treatment

- Cold-pressed pellet of Y₂Si₂O₇ and CMAS glass
 - 80 wt.% Y₂Si₂O₇, 20 wt.% CMAS glass
 - 20h heat treatments at 1200°C, 1300°C, 1400°C and 1500°C in air
 - Analyze resulting phases using XRD

Cold-pressed Y₂Si₂O₇/CMAS glass pellet

Heat >1200°C, CMAS glass melts and penetrates/reacts with Y₂Si₂O₇ substrate

- 1. CMAS glass infiltration into Y₂Si₂O₇ substrate
- 2. Thermo-chemical interactions of $Y_2Si_2O_7/CMAS$ glass

SEM Cross-Section of CMAS/Y₂Si₂O₇ substrate

 Scanning electron microscopy (SEM) to evaluate crosssections of heat treated CMAS glass/Y₂Si₂O₇ substrates

1200°C 1500°C Interface between Y₂Si₂O₇ substrate/CMAS glass after heat treatment

SEM Cross-Section of CMAS/Y₂Si₂O₇ substrate

CMAS glass penetration into Y₂Si₂O₇ substrates

- Infiltration depth increases with temperature

Heat Treatment	Depth of CMAS Infiltration
1200°C for 20h	$12.7 \pm 2.5 \mu m$
1300°C for 20h	80.9 ± 14.2 μm
1400°C for 20h	215.8 ± 17.6 μm
1500°C for 20h	217.6 ± 19.6 µm

1200°C 1500°C Interface between Y₂Si₂O₇ substrate/CMAS glass after heat treatment

SEM Cross-Section of CMAS/Y₂Si₂O₇ substrate

- CMAS glass penetration into Y₂Si₂O₇ substrates
 - Infiltration depth increases with temperature
- Thermo-chemical interactions
 - Precipitation of alternate phase in CMAS glass and infiltrated region

1200°C 1500°C Interface between Y₂Si₂O₇ substrate/CMAS glass after heat treatment

EDS Mapping of Interaction Region

- Yttrium incorporated into CMAS glass
 - Yttrium signal detected above substrate surface in glass
 - $Ca_2Y_8(SiO_4)_6O_2$ oxyapatite silicate phase expected
- Calcium infiltrated Y₂Si₂O₇ substrate
 - Depth of calcium infiltration corresponds to microstructural deformation in interaction region

Calcium Map

Yttrium Map

Interface between Y₂Si₂O₇ substrate and CMAS glass after 20h heat treatment at 1500°C

Quantification of Composition by EPMA

- Electron probe micro-analysis (EPMA)
 - Evaluate composition along line normal to substrate surface

BSE image of Y₂Si₂O₇ substrate and CMAS glass after 20h heat treatment at 1500°C

Quantification of Composition by EPMA

- Electron probe micro-analysis (EPMA)
 - Evaluate composition along line normal to substrate surface
 - Quantify variation in elemental composition from CMAS glass through Y₂Si₂O₇ substrate after various heat treatments
- Ca detected throughout CMAS glass and interaction region
- No Ca in substrate
- Minimal AI or Mg in interaction region
- Compare Ca content in specimens heat treated at different temperatures

Average CaO Content by EPMA

- CaO content in glass decreases with temperature
- CaO content in interaction region constant
 - Depth of interaction region increases with temperature
- No CaO detected in substrate

BSE image of CMAS glass/Y₂Si₂O₇ substrate after 1500°C-20h

15

Identifying Alternate Phase using XRD

- Heat treat powder pellets containing 80 wt.% EBC powder (Y₂Si₂O₇) and 20 wt.% CMAS glass
- Evaluate reacted pellet using X-ray diffraction (XRD)

Alternate phase: $Ca_2Y_8(SiO_4)_6O_2$ oxyapatite silicate phase

Conclusions and Current Efforts

- Desert sand (CMAS) glass reacted with Y₂Si₂O₇ yielding Ca₂Y₈(SiO₄)₆O₂ oxyapatite silicate phase
 - Formed by dissolution of Y₂Si₂O₇ in CMAS glass followed by precipitation during cooling
 - Similar reaction observed for Y₂SiO₅
- Depth of CMAS infiltration increased with increasing heat treatment temperature
 - More significant pore formation and microstructural deformation in interaction region compared with Y₂SiO₅
- Evaluate other advanced EBC materials' high-temperature interaction with desert sand (CMAS) glass