Project Structure Adv

Advanced Neutron Spectrometer on the International Space Station (ANS-ISS)

Mark Christl NASA/MSFC Oct 23, 2015

Deep Space Radiation Environment

- Radiation risk to crew includes charged and neutral particle
- Sources of charged particles in LEO include: GCR, SEP, Trapped Belts
- Secondary neutrons are generated through the interaction of these charged particles with matter : spacecraft/habitats and planetary surface or atmosphere (e.g. albedo from Earth's atmosphere)
- Mixed Radiation Field includes all of the above

Properties of neutrons

- Isolated neutrons have a half life of 13 minutes, so no primary neutrons sources
- Penetrating: no energy loss through direct ionization (tissue, shielding)
- Estimated 25% of dose on ISS is due to neutrons
- Neutrons have high Q values

ANS Technique: Gate and Capture

ANS GEN-II Instrument (2014)

ANS GEN-II Instrument (2014)

Waveforms for EM_Ver1 $nPMT+nFF$
 \overline{P} Median Neutron nPMT+nFEE — Median Alpha nPMT+nFEE — Median Beta nPMT+nFEE

Response to edge trig; 1"x1"x2"

EM_Ver1 nPMT+nFEE signal

Signal Response TRIUMF

AmBe Source Exposure

Comparison of 3 measured neutron source spectra

Gamma ray rejection

Gamma-ray Sensitivity (preliminary)

Comparison to Boron loaded detector

Comparison to NMS

Neutron Spectrum

Simulations

Neutron Angular Production

200MeV $p + Al \rightarrow n + X$

Neutron Spectra @ 45° – p + Al reaction

ANS GEN-II Geant4 Simulations

Neutron Energy Energy_1e-05_MeV 1e-05 MeV

Figure B1 Fraction events versus energy deposited in the ANS GEN-II detector volume for an incident neutron energy of 10 eV before neutron capture.

Neutron Energy Energy_0_5_MeV 0.5 MeV

Figure B2 Fraction events versus energy deposited in the ANS GEN-II detector volume for an incident neutron energy of 0.5 MeV before neutron capture.

Neutron Energy Energy_10_MeV 10 MeV

Neutron Energy Energy_20_MeV 20 MeV

Figure B4 Fraction events versus energy deposited in the ANS GEN-II detector volume for an incident neutron energy of 20 MeV before neutron capture.

PreCapture Photon Current Energy_0_5_MeV 0.5 MeV

Figure B7 ANS GEN-II optical photon response distribution for 0.5 MeV neutrons before neutron capture.

PreCapture Photon Current Energy_10_MeV 10 MeV

Figure B8 ANS GEN-II optical photon response distribution for 10 MeV neutrons before neutron capture.

PreCapture Photon Current Energy 20 MeV 20 MeV

Figure 11 Geant4 simulation of ANS GEN-II neutron response versus energy and PMT optical photon current.

Figure 17 ANS GEN-II response for high-rate 98 MeV protons at 950 V. The fit is 1.09x10⁶E -1.16 .

Figure 22 ANS GEN-II response for AmBe source 30 mV at 950 V. The normalization is 7.11x10⁷ .

Current Status

- NASA has not yet selected a neutron spectrometer for manned exploration
- Current state-of-the-art is based on boron loaded scintillator (cf. Lithium-6)
- ANS is a competing technique: advantages: positive neutron identification, better background rejection and cleaner spectral measurements in mixed radiation fields; disadvantage: lower neutron cross section, no commercial detector available
- ISS will provide the space flight environment to test ANS-ISS and mature the technique and design

ANS-ISS Summary

Objectives

- The ISS provides a relevant spaceflight environment for testing hardware
- Mature the ANS measurement technique and design
- Deploy to ISS for 6 month mission
- Transmit data to ground for analysis
- Analyze data to determine the fast neutron spectrum on the ISS
- Compare with FND (soon)
- Evaluate environment background

ANS-ISS Allocation

- Mass: 5 kgs
- Volume: 5"x9"x10"
- Power: 7.5 W
- Voltage: 28 VDC
- Data Link: USB to ISS laptop
- Data Rate: 100 kbits/sec
- Attachment location: Internal
- Attachment method: Velcro
- **Mission**
	- Primary: 6 months
	- Secondary: ISS duratiuon
- Launch configuration: Soft stow
- Payload readiness date: June/July2016

Next Steps

• Evaluate and test the response matrix with mono-energetic beams of neutrons:

 $E = 0.024, 0.14, 0.25, 0.57, 1.2, 2.5, 5, 8, 14, 19 MeV$

- Conduct flight test on ISS to evaluate trigger efficiency and susceptibility in a real space environment
- Compare derived spectrum with historical results and Boron loaded detector
- Finalize design and qualify: Tech-demo \rightarrow Operational instrument 5 year mission duration Verify de-convolution approach Potential alterations: single set of 4 PMTs spheres replacing fibers

Backup Material

Space Exposure

SPE Peak and Average values

Relevance of the accelerator exposures

Example calculation of the proton intensity for a deep space exposure to neutrons produced by to solar energetic protons interacting on a spacecraft/habitat sized shhelter:

Assumptions:

Area of spacecraft/habitat right circular cylinder: 5m $x5m = 118$ m² (=1.18x10⁶ cm²) Wall thickness: 10 g/cm^2 (based on ISS and including more than such the spacecraft wall) Incident flux: 1cps/cm^2 -sr (particle event threshold is 10 Hz/cm²-sr at >10 MeV) Total incident proton intensity (p+Al=> X) = **1.2x10⁶ p/s-sr**

For an average daily fluence of 10^4 /cm²-sr => 10^4 x1.2x 10^6 /(24x3600)=1.3x 10^5 p/s (peak flux probably is several factors higher than daily average)

For frustum 5x3.3=> 62.5 m 2 surface area; mass 9000kgs => 14.4 g/cm 2 Incident flux: 1cps/cm²-sr Total incident proton intensity $(p+Al=\ge X) = 0.625 \times 10^6$ p/s-sr

For an average daily fluence of $10^4/\text{cm}^2$ => $10^4 \text{x}1.25 \text{x}10^6/(24 \text{x}3600) = 0.7 \text{x}10^5 \text{ p/s}$ (peak flux probably is several factors higher than daily average)

Rate comparison

SPE intensity

IUCF intensity

