National Aeronautics and Space Administration

5...4...3...2...1... SPACE LAUNCH SYSTEM

SLS Flight Software Agile Development Process

Shaun Phillips SLS Flight Software Deputy Lead

> Ken King SLS Flight Software Lead

11/5/2015

Space Launch System (SLS)

Safe

Human-rated to provide safe and reliable systems Protecting the public, NASA workforce, high-value equipment and property, and the environment from potential harm

Affordable

- Maximum use of common elements and existing assets, infrastructure, and workforce
- Constrained budget environment
- Competitive opportunities for affordability on-ramps

Sustainable

- Initial capability: 70 metric tons (t), 2017–2021
 - Serves as primary transportation for Orion and human exploration missions
- Evolved capability: 105 t and 130 t, post-2021
 - Offers large volume for science missions and payloads
 - Reduces trip times to get science results faster
 - Minimizes risk of radiation exposure and orbital debris impacts

Designed for Beyond Earth Orbit Missions of National Importance

SLS Evolution Overview

Where is SLS Avionics Located?

Booster Avionics Interim Cryogenic Propulsion Stage Avionics

Booster Avionics Launch Vehicle Stage Adapter (Two Cameras for ICPS Separation)

Core Stage Avionics (Flight Computers, Command and Telemetry Controller, Inertial Navigation Equipment, RF Transmitter)

Core Stage Avionics (Command and Telemetry Controller, Power Distribution, Data Acquisition, Camera Equipment, Liquid Level Sensors, Rate Gyro, RF Transmitter)

Core Stage Avionics — (Main Propulsion System Valve Control, Core Stage Thrust Vector Control, Rate Gyro)

Core Stage Engine Controllers

SLS Block | Software Providers

SLS CSCIs

Flight Computer Application Software (FCAS) CSCI is designated as Flight Computer Application Software (FCAS) and provides the flight and pre-flight critical and non-critical software functions necessary for onpad prelaunch, launch, and ascent of the SLS vehicle

Green Run Application Software (GRAS) CSCI is designated as Green Run Application Software (GRAS) and executes a pre-defined thrust vector control actuator position profile for the Core Stage (CS) Thrust Vector Controller (TVC) actuators and a pre-defined Core Stage Engine throttle position profile

Flight Software Development Approach

- Release 11 Delivered to End Users on 9/29/2015 (SLS ASCB Delivery Date)
 - Successful design implementation and test
- Flight Software (FSW) Release 12
 - FSW Release 12 Mission and Fault Management (M&FM) Model delivered on 5/20/2015
 - ARTEMIS 10.2b delivered for Release 12 development
 - FSW Release 12 Sprint 4 in progress
 - FSW Release 12 Test Readiness Review scheduled for 12/9/2015
- Development Approach
 - FSW Release 12 [fully functional version of both GRAS and FCAS Engineering Release (ER) for both]
 - FSW Release 13 (initial FQT version of GRAS / FCAS)
 - FSW Release 14 (updated FQT version of GRAS / FCAS)
 - FSW Release 15 (defect repairs as needed)

Flight Software Requirements Verification

Development Process

- Configuration controlled build definition/mgmt. process part of ongoing Build Definition Mgmt. Cycle. Maintained by FSW Deputy Project Lead, controlled by Level II Project Control Board
- Product content for release driven by:
 - Functional capabilities needed for release identified
 - Available source product maturity evaluated
 - Gap analysis performed between items (1) and (2)
 - Deficiencies/issues identified and addressed
 - Capability/content included in release (or provided in later release) depending upon outcome of item (4) analysis

Agile Development

SLS FSW Test & Verification

10/27/2015

FSW Release Activities				2016										
	А	м	J	J	Α	S	0	N	D	J	F	м	Α	м
FSW Release 12.0		19 🔶									\Rightarrow	22		
Preparation Planning for Release 12.0		26	26											
Planning and Content Definition Complete														
FSW Release 12.0 Code, Integration and Test		19									\Rightarrow	22		
M&FM Algorithms for FSW 12.0		19												
GN&C Algorithms for FSW 12.0			19	r	lota			Varified						
ARTEMIS 10.2 Deliveries		Ŵ		4		1	0.2.1	9						
Software Sprints		19	1 5	2	20 3 <	3	15 4		25					
Sprint Integrations			6	1	17 2	1	3	12	7 Dev. Ta	g 12.4				
Test Dry Runs and Integration for FSW 12.0							26	25 12	11 .4 ₇					
SDF Ready for Test									√3					
FSW 12.0 TRR														
Testing of FSW 12.0									14		1	18		
Functional Test Report for Release 12.0											19	22		
FC Software Version Description Document (SVD)						5			DFT 23	F	inal V	23		
FSW 12.0 Product Release (FCA/PCA)											24	15		
Release 12.0 FSW FQT to SRB											1	15		
Release 12.0 Buy-off, CM/DM												16	30	
Release 12.0 FQT Software (Delivery to ASCB)													30	

www.nasa.gov/sls

Defect Tracking

Defects

- •Captured in the Serena Business Manager (SBM) Change Requests (CRs) System managed by development organization.
 - Analysis for root cause performed
 - -Assigned to appropriate team to resolve
 - -Assigned to a release
 - Closed with release testing

FSW Release 11 Test Results

Flight Software Maturity (R11 – R13)

Data as of 9/16/15

				Planned Maturity													Actual Maturity																								
	llor	ula/Elamont	DIACA	04400	Diam	DIACA	DHITD	DIACTO	DIDE	Diata	Dine	Disci	DITT	DIDETE	H264	D4202	D4202	DITCI	DAITO	DATE	DIACA	DHACOD	10 00 0			4000	4 C2 D4	CI DI	TD DHAR	10420	Dista	01262.0	3264 D	1211	CHO ST C	H2C4 D	H1010	4200	12C/ D	11100	изет
		tm	EIGL	E744	7104	010	0201	026	010	0704	0202	0201	0210	0216	021	0510	0010	001	201	100%	0%	004	5/06	6204 1	FROL	6/06	620L 7	34 KI	04 070	1 R123	700	004	(12.54 R	096	04	096	012 22 14	004	004	0%	1331
		ent area	5400	6200	7904	010	05.04	05.00	770	0050	0000	0001	0.02.10	0.192	004	00%	DELL	0010	0010	100%	0%	0%	100/	6406	5070	6600	7801 0	101 0	70 OF5	750	75.02	096	010	0%	010	006	010	010	010	010	00
		= (22	5470	624	750	00.10	0000	00010	0000	0010	0010	0010	0010	0010	DEL	0510	0010	00 /0 005/	0070	10010	0%	0%	1070	5/00/	1000	5405	7500 0	10 0	00 000	2 0101	0101	010	0%	0%	010	0%	070	010	010	070	01
		defin	34.00	E204	750	0001	10086	10084	001/	0010	0030	001	0050	001/	0010	0010	00%	00%	0010	100%	0%	0%	1400	1004	1000	6004	0002 0	101 0	01 050	0400	010	096	004	016	016	006	010	010	010	010	01
		fibch	2596	62%	7506	984	100%	100%	9046	0070	9946	0010	00%	00%	101	9046	9946	90%	0070	100%	0%	0%	1496	11%	1396	60%	67% 8	194 0	QL QF	6 954	95.96	0%	0%	0%	0%	(196	0%	0%	0%	0%	04
		ited	3596	62%	75%	96%	0000	0004	95%	96%	96%	96%	964	9646	BENG	9746	89%	98%	9.94	100%	0%	0%	14%	16%	10%	60%	79% 8	14. 0	4 020	6 9194	914	0%	0%	(196	0%	(196	096	0%	096	0%	0%
	Σ	tim proc	35%	62%	73%	81%	9094	2004	81%	7396	71%	76%	701	70%	R196	83%	8546	97%	0010	100%	0%	0%	14%	22%	20%	1346	71% 7	294 0	14 070	789	78%	0%	0%	(196	0%	(196	0%	0%	096	0%	0%
	<u>к</u>	m1553	51%	62%	74%	87%	02%	97%	81%	87%	83%	81%	83%	8346	87%	85%	RRA	2236	RR	100%	0%	0%	49%	72%	47%	60%	78% 8	1% 9	96 974	819	81%	0%	0%	0%	0%	0%	0%	0%	096	0%	0%
	Ĕ <u> </u>	ide	54%	62%	75%	78%	100%	100%	88%	883.	2036	88%	0.014	89%	884.	89%	88%	224	223	100%	0%	0%	44%	50%	52%	60%	69% 7		% 85	6 85%	85%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	۲	fm	35%	62%	69%	72%	72%	72%	72%	71%	74%	78%	81%	81%	82%	83%	85%	87%	RRS	100%	0%	0%	23%	23%	4596	51%	68% 6	2% 62	Ph E99	6 689	71%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
114		nde sync	54%	62%	74%	85%	0696	9696	85%	85%	85%	85%	85%	8546	85%	85%	RR4.	9846	RRS.	100%	0%	0%	44%	52%	52%	5/0%	76% 7	7% 9	N 85	6 82%	87%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
ee		is/nc	54%	62%	75%	88%	100%	100%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	100%	0%	0%	46%	50%	52%	60%	74% 8	% 9	% 97	85%	85%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
pq		acd	35%	62%	69%	72%	72%	72%	72%	71%	79%	87%	88%	88%	88%	88%	88%	88%	88%	100%	0%	0%	18%	22%	40%	52%	69% 6	3% 6	1% 694	6 69%	69%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
ž	1	cwd	35%	62%	69%	72%	72%	72%	72%	72%	72%	72%	72%	72%	75%	83%	88%	88%	88%	100%	0%	0%	15%	18%	40%	52%	69% 6	3% 6	% 69	69%	69%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
S		omd	35%	62%	75%	88%	100%	100%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	100%	0%	0%	20%	34%	55%	74%	85% 8	5% 9	% 979	97%	85%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RA A		oshm	35%	62%	75%	88%	100%	100%	88%	72%	72%	72%	72%	72%	72%	72%	72%	88%	88%	100%	14%	14%	27%	27%	23%	52%	69% 6	9% 8	1% 699	6 69%	69%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
O	_	infra	49%	62%	70%	74%	76%	76%	74%	74%	74%	74%	74%	74%	76%	76%	85%	88%	88%	100%	0%	0%	37%	38%	41%	45%	70% 7	1% 9	% 97	6 73%	71%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		ctc mgr	48%	48%	51%	51%	51%	51%	60%	69%	69%	69%	69%	69%	74%	76%	82%	85%	88%	100%	0%	6%	49%	53%	50%	50%	58% 5	B% 5	1% 58	6 62%	63%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
0		adh_n	48%	48%	51%	51%	51%	51%	66%	65%	69%	69%	69%	69%	72%	72%	72%	88%	88%	100%	49%	43%	46%	46%	46%	49%	57% 5	7% 5	% 579	6 58%	61%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2		uni	48%	48%	51%	51%	51%	51%	60%	62%	68%	73%	76%	76%	81%	83%	83%	85%	87%	100%	0%	0%	48%	51%	54%	51%	56% 5	5% 5	1% 564	6 57%	58%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
ž.	-	rga	48%	48%	51%	51%	51%	51%	60%	72%	72%	72%	72%	72%	74%	76%	82%	85%	88%	100%	0%	0%	44%	45%	57%	54%	54% 5	4% 5	1% 549	6 58%	72%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2		CSE	48%	48%	51%	51%	51%	51%	60%	62%	66%	71%	73%	73%	81%	83%	85%	87%	88%	100%	23%	24%	46%	56%	45%	45%	48% 5	2% 5	% 529	6 58%	60%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
5		mps	48%	48%	51%	51%	51%	51%	60%	66%	71%	73%	76%	76%	81%	83%	85%	87%	88%	100%	7%	7%	44%	51%	44%	44%	49% 4	9% 4	1% 49	6 54%	57%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
-		CS_NC	48%	48%	51%	51%	51%	51%	48%	62%	71%	73%	76%	76%	81%	83%	85%	87%	88%	100%	22%	14%	35%	41%	44%	44%	50% 5	0% 5	1% 50	6 52%	54%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		eps	48%	48%	51%	51%	51%	51%	60%	70%	71%	70%	76%	76%	81%	83%	85%	87%	88%	100%	0%	18%	43%	46%	49%	49%	52% 5	2% 5	% 529	6 60%	62%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		adh out	48%	48%	51%	51%	51%	51%	60%	65%	69%	69%	69%	69%	72%	72%	72%	88%	88%	100%	51%	43%	46%	46%	46%	46%	57% 5	7% 5	% 579	6 60%	63%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		sdac	48%	48%	51%	51%	51%	51%	60%	62%	66%	69%	69%	69%	74%	76%	82%	85%	88%	100%	14%	14%	27%	46%	45%	46%	55% 5	5% 5	1% 559	6 55%	60%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		grom	48%	48%	51%	51%	51%	51%	60%	72%	72%	72%	72%	72%	74%	76%	82%	85%	88%	100%	0%	0%	45%	62%	47%	47%	50% 5	0% 5	1% 50%	6 58%	72%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		qmm	48%	48%	51%	51%	51%	51%	60%	72%	72%	72%	72%	72%	74%	76%	82%	85%	88%	100%	0%	0%	49%	54%	45%	45%	49% 4	9% 4	1% 499	6 64%	72%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		mm	42%	42%	45%	45%	45%	45%	54%	55%	59%	66%	68%	68%	70%	80%	85%	87%	88%	100%	0%	.0%	45%	50%	56%	52%	58% 5	B% 5	1% 58	6 60%	61%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		gnc	42%	42%	47%	47%	4%	47%	56%	54%	54%	54%	54%	54%	64%	78%	84%	85%	88%	100%	43%	38%	41%	43%	43%	43%	49% 4	9% 4	1% 49	6 45%	45%	0%	0%	0%	0%	0%	0%	0%	0%	0%	09
		30	34%	34%	37%	37%	37%	37%	47%	45%	39%	41%	41%	42%	67%	79%	85%	87%	88%	100%	16%	16%	27%	28% 2	29%	29%	32% 3	2% 3	% 32	6 34%	34%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
		090	42%	42%	47%	47%	47%	47%	56%	54%	54%	54%	54%	54%	60%	69%	72%	88%	88%	100%	11%	11%	38%	38%	40%	40%	43% 4	3% 4	1% 439	6 25%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Each cell is a measure of completeness																					low	hio	h																	

- Each cell is a measure of completeness (maturity)
- Weight sum of each major FSW process area
 - Requirements
 - Design
 - Implementation
 - Verification

