# Status of Solar Sail Propulsion Within NASA Moving Toward Interstellar Travel

Les Johnson NASA MSFC





- → Solar Sails What are they and how do they work?
  - Planned Solar Sail Missions (NASA leading or partnering)
    - Near Earth Asteroid Scout
    - InflateSail
    - LightSail-B
  - The BIG and Not-So-Secret Plan (Hint: Why we are at this symposium!)



### How Does a Solar Sail Work?





Solar sails use photon "pressure" or force on thin, lightweight reflective sheets to produce thrust.



# Solar Sails Can Spiral Inward or Outward From The Sun



Image courtesy of Colorado Center for Astrodynamics Research









Shrinking orbit

Expanding orbit

Advanc



## NASA Ground Tested Solar Sails







# **NanoSail-D Demonstration Solar Sail**



- 10 m<sup>2</sup> sail
- Made from tested ground demonstrator hardware















Interplanetary Kite-craft Accelerated by Radiation of the Sun (IKAROS)







# The Planetary Society's LightSail-A









- Solar Sails What are they and how do they work?
- → Planned Solar Sail Missions (NASA leading or partnering)
  - Near Earth Asteroid Scout
  - InflateSail
  - LightSail-B
  - The BIG and Not-So-Secret Plan (Hint: Why we are at this symposium!)



# Near Earth Asteroid (NEA) Scout





# **Near Earth Asteroid Scout Overview**

### The Near Earth Asteroid Scout Will

- Image/characterize an asteroid
- Demonstrate a low cost asteroid reconnaissance capability

#### Key Spacecraft & Mission Parameters

- 6U cubesat (20 cm X 10 cm X 30 cm)
- ~86 m2 solar sail propulsion system
- Manifested for launch on the Space Launch System (EM-1/2018)
- Up to 2.5 year mission duration
- 1 AU (93,000,000 mile) maximum distance from Earth

#### **Solar Sail Propulsion System Characteristics**

- ~ 7.3 m Trac booms
- 2.5m aluminized CP-1 substrate
- > 90% reflectivity











#### Why NEA Scout?

- Detect and track a Near Earth Asteroid (NEA) target
- Characterize the physical properties of the unresolved NEA target
- Flyby and characterize the physical properties of the resolved NEA target

**Measurements:** NEA volume, spectral type, spin mode and orbital properties, address key physical and regolith mechanical SKG

- ≥80% surface coverage imaging at ≤50 cm/px
- Spectral range: 400-900 nm (incl. 4 color channels)
- ≥30% surface coverage imaging at ≤10 cm/px

#### **Key Technical Constraints:**

- 30 month maximum mission duration
- Target must be within ~1 AU distance from Earth due to telecom limitations
- Slow flyby with target-relative navigation on close approach





# Rendezvous Target Search



• Telecom Distance (AU)

Advan

- blue < .25
- green < .5
- orange < .75
- red < 1
- 000
  - $\triangle$  under 2
  - □ under 4
  - ∇ under 7
- Size (approximate diameter)
  - small < ~15 m
  - med. < ~30 m
  - large < ~50 m

Local minima for flight time. Flight time increases linearly with pre-escape loiter time Flight time increases non-linearly with delayed escapes



# What do we Know About 1991 VG?

- Not much
- H = 28.4±0.7
- Diameter ~ 4-17 meters
- Albedo is unknown
- Rotation period between a few minutes and less than 1 hr.
- Unlikely to have a companion
- Likely did not retain an exosphere or dust cloud
  - Solar radiation pressure sweeps dust on timescales of hours or days





Adva

# NEA Scout Operations Overview









Folded, spooled and packaged in here



**Deployed Solar Sail** 



# **University of Surrey's InflateSail**

InflateSail is an inflatable, rigidizable sail for flight in Low Earth Orbit:

- 3U CubeSat with deployed sail area of 10 m<sup>2</sup>
- Sail supported by bistable booms
- Inflation is driven by Cool Gas Generators (CGG): low system mass, long lifespan







Advanced







## CubeSail CubeSat Solar Sail Propulsion Demonstration

- The University of Illinois at Urbana-Champaign (UIUC), working with NASA MSFC, NSF and CU Aerospace, built the flight hardware for a CubeSat-based 20 m<sup>2</sup> solar sail orbit raising demonstration mission
- Selected for flight under the NASA CubeSat Launch Initiative



Advancë



### Interstellar Probe: A Possible NASA Mission in the 2020's



#### Deploy a large (>10,000 m2) solar sail near the sun to enable travel 5X faster than Voyager





Goal: Reach 250 Astronomical Units within 20 years of launch





- Solar Sails What are they and how do they work?
- Planned Solar Sail Missions (NASA leading or partnering)
  - Near Earth Asteroid Scout
  - InflateSail
  - LightSail-B
- The BIG and Not-So-Secret Plan (Hint: Why we are at this symposium!)

### The Real Reason to Develop Solar Sails





# The Plan (as yet unfunded)







### Aggressive Sail Development To Enable Interstellar Exploration







# Looking Back Toward Home



