

Composite Structures Repair Development at KSC

Sarah Cox NASA Materials and Process Engineering Kennedy Space Center, FL

Supporting Team

Panel Fabrication, Repair Work, Testing - KSC

- LaNetra Tate
- Susan Danley
- Anne Caraccio
- Brian Cheshire
- Jeffrey Sampson
- Brian Taylor

NDE – PAR Systems, Inc

- Bence Bartha
- Jeff Elston

Modeling and Analysis – GSFC

- Ken Segal
- Babak Farrokh
- Terry Fan

- Background of Composites and Recent Agency Composite Projects
- Sandwich Panel Fabrication
- Repair Development and Testing

What is a Composite?

- Basic Definition: A material made up of two or more different materials which keep their individual properties
- Advanced Composite Materials: A fiber reinforced matrix
- Matrix
 - Polymer/Epoxy
 - Metal
 - Ceramic

- Reinforcement
 - Glass
 - Aramid (Kevlar)
 - Carbon
 - Ceramic
 - Natural

Strategy for Development

Composites for Exploration

<u>Vehicle</u>	Heavy Lift	Atlas V	Delta IV
Dia	10 m	5.4 m	5.1 m
Area	~561 m²	~311 m²	~277 m²

- A Multi-center team with the goal of developing a 10 m diameter payload fairing
- Demonstrate 25-30 percent weight savings and 20-25 percent cost savings for composite compared to metallic payload fairing structures

CoEx Thrust	SOA
Panels for 10- m-dia. barrels	No composites experience at this scale
Automated manufacturing	Limited to 7-m- dia. barrels
OoA* technologies	Maturing for aerospace quality
Design database	Not demonstrated for 10-m-dia. barrels

*out of autoclave

Composite Cryotank Technologies and Demonstration

 Overall goal of the project is to achieve 30% weight savings and 25% cost savings of LH₂ composite cryotanks

http://gcd.larc.nasa.gov/projects/composite-cryogenic-propellanttank/#.U3yoYfldWAg

• 5.5-m tank was fabricated by Boeing and successfully tested at MSFC in 2014

KSC Objectives

- Understand the properties of the composites
- Perform hands on repair work at KSC
- Investigate out of autoclave repair cure process

Composite Panel Fabrication

400 350

0

- HR40/5320-1 Prepreg Unitape
 - Out of Autoclave System
 - Hand Layup Method

Vacuum Debulk of Composite Panel

Oven Cure of Panel Under Vacuum

Material Property Testing

- Void Analysis
 - Microscopy
 - Combustion
 - Compared with Acid
 Digestion at Glenn
- Mechanical Testing
 - Tensile
 - 16 ply specimens, all in the same direction
 - Short Beam Shear
 - 32 ply specimens, all in the same direction

32-ply quasi isotropic panel, 100X

Repair Test Plan

- 1. Fabricate sandwich panel
- 2. Impact with 5.5 ft-lbs force (per ASTM 7136)
- 3. Remove damaged area
- 4. Scarf around damaged area
- Repair with a honeycomb core plug and a patch
- Edgewise compression test on control and repaired panels

Impact Damage

Impacted Panel

Sandwich Panel Repair

Face Sheets

- HR40/5320-1 Unitape Prepreg
- 8-ply quasi-layup

Core

- 1.5" Aluminum Honeycomb
- FM-300 Film Adhesive

Repair Patch

- HR40/5320-1 Unitape Prepreg
- FM-300 Film Adhesive

Core Plug

- 1.5" Aluminum Honeycomb
- Hysol MA 562 Foaming Adhesive

Facesheet Scarfing

Patch Preparation Methods

- Method I: Pre-cured Patch
 - Patch was cured in an oven with the standard cure cycle
 - Patch was bonded to the part at 350°F for 1 hour
- Method II: Co-cured Patch
 - Patch was cured on the part with a hot bonder
 - Used cure cycle of the material: 250°F for 3 hours and 350°F for 2 hours
- Method III: Partially Cured Patch
 - Developed a method to determine the cure cycle based on research of previous work. Determined the best cure cycle from study to be:
 - Patch partially cured at 200°F in an oven for 1 hour
 - Patch fully cured at 350°F with the hot bonder for 2 hours on the part

Patch Bonding

Repaired Panels

Panel A: Pre-cured Patch

Panel C: Co-cured Patch

Panel B: Pre-cured Patch

Panel D: Co-cured Patch

- ASTM C 364: Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions
 - Assess the residual strength
- Panels potted into end caps to prevent brooming
- Edges wrapped to reduce stress

Control (no damage, no repair)

	Maximum	Compressive	Compressive
Panel	Compressive Load	Extension at Max	Stress at Max
ID	(lbf)	Load (in)	Load (ksi)
G	51775	0.082	52.4
Н	Error During Data Collection		

Max

Pre-cured Patch

Panel ID	Maximum Compressive Load (lbf)	Compressive Extension at Max Load (in)	Compressive Stress at Max Load (ksi)
А	46608	0.071	47.4
В	49494	0.075	50.0
<image/>			

Co-cured Patch

	Maximum	Compressive	Compressive
Panel	Compressive Load	Extension at Max	Stress at Max
ID	(lbf)	Load (in)	Load (ksi)
С	38383	0.059	42.2
D	38992	0.059	39.3

- Partially curing the patch in the oven allows the patch to have some rigidity and hold its shape but still have some flexibility to fully conform to the part
- Beneficial for curves and complex shapes
- Decreases repair time by having commonly damaged area shapes, and patch sizes available
- Decreases the cure time on the vehicle

NDE during Repair Process

- Three additional sandwich panels were fabricated with the same materials
- The panels received IR Thermography scans after each event:
 - Fabrication
 - Impact
 - Repair (IR Thermography and Shearography)
- Three patch methods: pre-cured, co-cured, and partially cured patches used on the panels

Initial IR Thermography Scan

Planned for Co-cured patch

Planned for partially cured patch

Planned for pre-cured patch

After Impact

After Repair – Co-cured Patch

After Repair – Partially Cured Patch

After Repair – Pre-cured Patch

Co-cured Patch

Partially Precured Patch

Summary of Results

	Patch	Maximum	Compressive	Compressive
Panel	Cure	Compressive Load	Extension at Max	Stress at Max
ID	Method	(lbf)	Load (in)	Load (ksi)
G	None	51775	0.082	52.4
А	Precured	46608	0.071	47.4
В	Precured	49494	0.075	50.0
С	Cocure	38383	0.059	42.2
D	Cocure	38992	0.059	39.3
L	Cocure	34111	0.054	34.6
Μ	Partially	36117	0.056	36.6
Ν	Precured	38934	0.059	39.5

- A comparative study of edgewise compression testing on repaired sandwich panels was completed
- Repairs with precured patches had higher loads than partially cured or cocured patches
 - This may be due to variations in hot bond curing
 - Need more data on partially cured patches

Future Work

- Test panels with damage, no repair
- Test more panels with partial cure patches, incorporating lessons learned from previous work
- Take a closer look at the heating profile of the hot bonder
- Perform repairs on curved panels

Questions?

References

- 1. Mark J. Shuart, "Composites for Exploration." *SAMPE Conference and Exhibition Presentation*, PowerPoint. May 21-24, 2012
- Douglas A. McCarville, et. al. (2013) "Manufacturing Overview of a 2.4 Meter Composite Cryotank." SAMPE Conference Proceedings, Long Beach, CA, May 6-9, 2013.
- Keller, R.L., Owen, W.S. "Process method to repair bismaleimide (BMI) composite structures." (2004). US Patent Number 6761783. http://www.google.com/patents/US6761783
- 4. Keller, R.L. and Spalding, J.F. "Process development protocol and vacuum bag process for carbon-epoxy prepreg." *US Patent Number 7857925*. https://www.google.com/patents/US7857925