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Fiber Optic Sensing System (FOSS)
Technology

A New Sensor Paradigm for Comprehensive Subsystem
Model Validation throughout the Vehicle Life-Cycle

Francisco Pena, Dr. Lance Richards, Allen. R. Parker, Jr.,

Anthony Piazza, Patrick Chan, and Phil Hamory

NASA Armstrong Flight Research Center
Edwards, CA
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Background and Inspiration

Biological Inspiration of Fiber Optic Smart Structures

One Square-Inch of Human Skin
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Background

Armstrong initiated fiber-optic sensor
system (FOSS) technology development
effort in the mid-90’s

— Armstrong effort focused on atmospheric n A

flight applications of Langley patented OFDR | aasmg—= Ground to Flight

demodulation technique Fiber-Optic Sensing

Technology Development

FOSS R&D focused on developing systems
suitable for flight applications

— Previous system was limited due to laser
technology

— System limited to 1 sample every 90
seconds

Armstrong initiated a program to develop a
more robust / higher sample rate fiber optic ;
system suitable for monitoring aircraft q g ‘

structures in flight SR ’

As aresult, Armstrong has developed a
comprehensive portfolio of intellectual ;
property that is now ready to be H W My Crogscc

commercialized by the private sector. ‘ o

tiagnenc Feld = 4 20 $hape
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Background

« The NASA Armstrong (formerly Dryden) Flight Research Center (AFRC) Fiber Optic
Sensor System (FOSS) was originally developed for in-flight strain measurements of
aircraft

— The system measures strain & temperature as changes in reflected wavelength from a laser source.
The system has successfully flown on several aircraft at AFRC

« LSPis sponsoring increased capability of FOSS technology to replace legacy flight

Instrumentation

— Potential for light-weight, low-cost, reliable, easily installed system producing more data to replace
strain gauges, accelerometers, rate gyros, thermocouples, propellant sensors for less $ than current

systems

— LSP currently sponsoring testing of FOSS in in the CRYOTE 3 for further development of cryoFOSS
for propellant mass gauging and propellant stratification measurements in LN, and LH,. Results
indicate promise for high accuracy mass gauging for increased propellant utilization

— LSP currently sponsoring testing of FOSS development to increase sample rate with the goal of 40
kHz from the current 100 Hz with the goal of measuring acceleration

— LSP is currently sponsoring an investigation the potential for FOSS to measure magnetic and RF
fields.

— LSP has sponsored design and development of FOSS for current ELVs on contract to NASA
* Flight avionics FOSS box near completion (collaborative effort between LSP, AFRC, and MSFC
« Currently in discussions with Commercial Space companies and NESC for potential flight
opportunity
« LSP is still seeking Agency-level funding to achieve greater agency integration
ground testing, and flight applications
— Cross-Agency interest has been expressed by other governmental launch stakeholders
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Fiber Optic System Operation Overview

Fiber Optic Sensing with Fiber Bragg Gratings

 Immune to electromagnetic / radio-frequency interference and
radiation

- Lightweight fiber-optic sensing approach having the potential of . Grating region
embedment into structures Laser tuning

« Multiplex 100s of sensors onto one optical fiber
* Fiber gratings are written at the same wavelength

« Uses anarrowband wavelength tunable laser Tuning
source to interrogate sensors direction
» Typically easier to install than conventional g
strain sensors start A stop
* In addition to measuring strain and temperature these sensors
can be use to determine shape
2T R — spectrum of it" grating

I = Z R.Cos(k2nL;,) k=— n — effective index
i A L — path difference
k —wavenumber

Reflector A A A

Laser light .
—>—3 I I I » Loss light
4_

Reflected light L1 | | ‘
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How Does it Work: FBG OFDR Overview

Tunable Laser Signal Conditioning and A/D Perform FFT

— AD | Hp no.“ﬂp
Wavelength Length
Domain Domain

<1VC>A41>/\/‘\/\/V—>
ArA
1548 to 1552nm
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Why Fiber Optic Sensors?
One Of These Things (is Not Like The Others)

— s

Wire for 21 strain gage measurements
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FOSS Advantages to Conventional Strain Measurements,

Unrivaled spatial density of sensors for full-field measurements
Measurements immune to EMI, RFI and radiation
Lightweight sensors

— Typical installation is 0.1 - 1% the weight of conventional gage

installations (based on past trade studies)

— 1000’s of sensors on a single fiber (up to 80 feet per fiber)

— No copper wires
With uniquely developed algorithms, these sensors can determine
deformed shape and loads at points along the fiber for real-time
feedback INE -
Great in high strain and fatigue environments . =E{(3”_1)80 +62(n—f)9,- +€,,}
Small fiber diameter

— Approximately the diameter of a human hair

— Unobtrusive installation

— Fibers can be bonded externally or applied as a ‘Smart Layer’ top ply
Single calibration value for an entire lot of fiber
Wide temperature range

— Cryogenic up to 500°F

— Very linear thermal compensation

Fiber optic
Fiber optic strain sensors temperature

Sensors

Strain gage
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Fiber Bragg Grating (FBG)

Optical Frequency Domain Reflectometry (OFDR)

FBG-OFDR can dramatically improve structural and system
efficiency for space vehicle applications by improving both
affordability and capability by ...

* Providing >100x the number measurements at PR ey —————

1/100 the total sensor weight

Thermocouple =Sl
Foul Strain Gage

3

 Providing validated structural design data that 7 Foss Tenpemuks (0 SRR
enables future launch systems to be lighter and Metallic Coupon
more structurally efficient

* Reducing data system integration time and cost
by utilizing a single small system for space /
launch venhicles

Pressure Liquid level
monitoring sensing

* Increasing capability of measuring multiple
parameters in real time (strain, temp., accel, liquid
level, shape, applied loads, stress, mode shapes,
natural frequencies, buckling modes, etc.)
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« Providing an unprecedented understanding about
system/structural performance throughout space ol -
craft and mission life cycle ISS COPV strain & temp

monitoring

Shape sensing for
vehicle control
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FOSS Rationale for Loads / Dynamics
Excerpts from Larsen et. al. NESC 2015

“For complex space systems, historical data indicates that unless a model is
tuned/adjusted to its mode survey test data, it will contain significant errors.”

“Accurate loads analysis models (from element-level to full-scale) can only be achieved
with test validation.”

“The ultimate goal is a validated and verified model of the vehicle during future launch
operations that can be used to reliably predict response with different payloads, wind
profiles, etc.”

“Developmental Flight Instrumentation (DFI) provides the data to reduce the uncertainty
in the predicted loads and dynamic responses, update the model, and identify
excess/insufficient margins before future flights.”

“DFl is essential to identifying behaviors that cannot be measured during ground tests, or
cannot be easily excited or replicated.”

“To date, in every first flight and in_many subseguent flights of NASA man-rated space
launch vehicles, DFI has helped reveal important vehicle responses that were not initially
predicted in ground-based testing and analysis and in prior flights.”

« For manned space exploration missions, there is no such thing as “Operational Flight

Instrumentation” CAIB

“Because of flight-to-flight variability, data must be collected from numerous flights to
properly/conservatively establish behavior of the system.”
FOSS has potential to “break the rules” for DFI; it can be used throughout loads /
dynamics modeling efforts (from ground to flight) by providing an unprecedented
understanding about LV/SC performance throughout vehicle life cycle

« Unlike conventional DFI philosophy, more trouble to remove FOSS due to low weight,
small size

10



LSP Funded FOSS R&D Activities

WIS
Magnetic Eield Clamp Band
Jesting

eCT . g

ULLA; @rbital
easibility: Studies'/
Prelim. Design

Cryogenic
DPynamic Strain — ISiguidievel
& ACGCelerometer |
Measurements

National Aeronautics and Space Administration
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Bridging the Gap Between
Aeronautics and Space

Implementation of FOSS on ELVs
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Armstrong’s FOSS Technology
Current Capabilities

Current system specifications

s « Fiber count 16
= - Max sensing length / fiber 40 ft
E - Max sensors / fiber 2000
=  Total sensors /system 32000
% « Max sample rate (flight) 100 sps
§  Max sam!ole rate (ground) 60 sps
S  Power (flight) 28VDC @ 4.5 Amps
) - Power (ground) 110 VAC
= . User Interface Ethernet
g «  Weight (flight, non-optimized) 27 Ibs
= « Weight (ground, non-optimized) 20 Ibs
2 « Size (flight, non-optimized) 7.5x 13 x 13in
g « Size (ground, non-optimized) 7x12x 11in
;‘U Environmental qualification specifications for
S flight system
= * Shock 89
= « Vibration 1.1 g-peak sinusoidal curve
« Altitude 60kft at -56C for 60 min
- Temperature -56 < T <40C

Predator -B in Flight




Compact FOSS v2.0 Launch System Specs.

 Targeted Specifications:

,5 — Fiber count: 8

§ — Max sensing fiber length: 80 ft é

= — Max fiber length from system: ~300 ft =

E — Fiber type: SMF-28 $

<q§ — Max # sensors/system: 32,000

& — Max Sample rate: 100 Hz r

(@R .

% — Interface: Ethernet {

S — User Interface Protocol: TCP/IP * %

ks — Operational Communication Protocol: UDP | 3

E ~ Power: 68W @ 28Vdc : é |
S — Weight (including enclosure): <20 Ibs 7 |
< — Size (application specific): 17.7x7.5x3.51in K i BE
.g  Applications:

g — Launch vehicles

— Aircrafts
— UAVs

14



Implementation of FOSS on ELVs

* NASA LSP is sponsoring design
and development of FOSS for
current ELVs on contract to NASA

— Desired goal is an FY17 flight
demonstration of FOSS technology
on two different ELVs, each on a
different LV stage

— Initial flight to produce flight data to
prove utility, justify use on other
vehicles

* NASA LSP is seeking cross-
Agency and commercial advocacy
to finalize flight demonstration
funding

— Cross Agency interest has been
expressed by other governmental
launch stakeholders
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— Space Act Agreements with
commercial launch providers are
either in place or currently in work
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Bridging the Gap Between
Aeronautics and Space

Comprehensive Real-time
Operational Loads Monitoring
and Vehicle Control with FOSS

16



Loads Calibration with
conventional strain gage technology

Loads calibrations on A/C wings with conventional
strain gages have been successfully performed for

over 50 years
« Skopinsky and Aiken Loads Calibration Method allows
engineers to obtain:

. Lift or Shear Force
. Bending Moment
. Pitching Moment or Torque

Typical Conventional Loads Calibration requires:

» Dozens of metallic strain gages
* One sensor per channel
Installed on interior load bearing structure of wing
Wing skins need to be removed
Installation time of approx. 4 to 8 hours per sensor
Finite point measurements ) _
* Removal of ground-test-specific instrumentation prior to ==ttt
flight ' ;
» Bulky sensor size restricts the use in high lift regions
* 16 channels of load actuators
» Application of an array of mechanical loads to determine
bending and torsional stiffness properties Simplified Approach with FOSS
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* Limited Span-wise load sensing capabilities




Investigations of Fiber Optic Sensing System (FOSS) for
Distributed Load Calibration Methodology

Technical Challenge:

» Future projects require a method for monitoring the load
distribution within aerospace structures

» Instrumentation weight and installation time of
conventional strain gages limit the ability to monitor and
control distributed loads within aerospace structures

Current State-of-the-Art:

» Fiber optic strain sensing (FOSS) technology is
transitioning to an airworthy alternative to conventional
strain gages and will change the approach to aircraft loads
calibrations

* FOSS will open up new opportunities to monitor and
facilitate control of future launch vehicles

Potential Applications:

» Improved understanding of distributed aerodynamic
loading

» Optimized process for aircraft structural loads calibrations
for monitoring and controlling flexible, high aspect ratio
wings and rocket bodies
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will be required for optimizing the aerodynamic
performance of future aerospace structures

Shape sensing for
vehicle control 18




Aircraft Vehicle Load Control

« cFOSS 1.0 sUAS Flight system specifications
(Convection)
— 4 Fiber system
— Total sensors: 4000
— Sample rate (max) 100 sps

— Weight 5 Ibs

— Size 3 x5x11in
 Autonomously Piloted Vehicle 3 (APV3)

— Span: 12 ft

— Max Takeoff Weight: 55 Ibs
— 22 control surfaces per wing
— 2,000 fiber optic strain sensors on wings (top and bottom surfaces)
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APV3 Segmented Control Surfaces

« Segmented Control Surfaces
(SCS) can be utilized to
redistribute load in-board to reduce
loads during high-g maneuvers

 FOSS strain and/or deflection
measurements could be used with
a flight controller to provide load
alleviation control

B Conventional lift distribution
B Redistributed lift distribution
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Lift Loads

Wing Span

load alleviation configuration
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Results With Flight Data

Operational Load Estimation Method Applied

Lift Loads

APV3 in flight

M Conventional lift distribution

[ Redistributed lift distribution

Wing Span

Conventional configuration
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Operational Load Estimation Method Applied
Results With Flight Data

Span (in)
Bottom Surface Microstrain at 1038 Seconds into Flight
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Distributed Loads Technology Roadmap

Aviation

CIF FY16 gid | IKHANA Flight
a—’.""'f"*;’i’

Demonstration
AFRC FLL Test Execution
and Data Analysis

Autonomously Piloted

FY 2015 FY 2016 FY 2017 FY 2019
S pace CIF FY17

Sounding
Rocket Flight
Demonstration
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Sounding Rocket FLL
Loads and Modal Test
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Bridging the Gap Between
Aeronautics and Space

FOSS for High Frequency Launch
Vehicle Applications
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Purpose

Innovation

Results

HyFOSS for High Frequency
Launch Vehicle Applications

HyFOSS sensor

Evaluate, identify, and demonstrate
enhancements to AFRC’s FOSS System to
gather high frequency loads & dynamics data
Determine feasibility of replacing
accelerometers with FOSS sensors

Test Set-up

Developed novel single hybrid interrogation

scheme that gleans the benefits of two different HyFOSS
FBG sensing technologies, WDM and OFDR, in ~ S€nsor
one small system: Installation

+ WDM acquires FBG measurements at higher
speed (35kHz) and lower density (~80/fiber)

* OFDR acquires higher density FBG -
measurements (2000/fiber) and lower speed , | Accelerometer vs. HyFOSS (5 modes)

525 Hz; obtained good correlation between
FOSS derived accels and accelerometers, thus
demonstrating feasibility

Patent pend | ng ’ _1' 15 2 25 3 35 4 Ti;:e (s)s 55 6 65 7 75 "25

(100Hz) : recdsenea ]
A single small system can be used to samplea P Ty, , AT
. 8 nivacvl | 1Colllily

large number (16000) measurements at 0.25in

spatial resolution at 100 Hz and sample a small ;

number (80) of high dynamic strains at 5Khz 5 B ala ola ol
= UV EARAAAARA
o “H(\' MY VYV VVVVVV VUV
[0}

Conducted impact testing / modal surveys to 31| L
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HyFOSS, Frequency Sweep Vibration Testing

Experimental setup

« Cantilever test article with discontinuous section properties.

* A Finite Element Model has been created to determine strain gage locations

« Aluminum wing plate structure is excited by an electrodyanamic shaker

« 7 Accelerometers are mounted to the structure to monitor structure mode
shapes

« OFDR and WDM sensors (3) are bonded to the plate

« Test article is 36 inches long and 12 inches wide

WDM / High Speed Fiber Optic Sensor

Sy orce N
cell -

‘ cel 2 -
.lll ll -

cel 4 N

i cel 5 -

cel & N
cel 7 -

355 3?5

Flequenqr (Hz)
Accel4 Accel5 Accel 6

Power (g“thz}
P T R i )
[a) [a) [a) [a) [a) [a) [a)

Accel 2 Accel 3 Accel 7.,




HYyFOSS Sensor Installation
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o -100 Hz (OFDR)
O -5,000 Hz (WDM)
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HyFOSS test — Fiber Optics & Accelerometer
Frequency Sweep 475 Hz to 525 Hz

High Sp

National Aeronautics and Space Administration

mircrostrain
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{ B 5§ o B kB W & =
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A on we Am W I¥m
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HyFOSS Plate — Fiber Optics & Accelerometer
Power Spectral Density (475 Hz to 525 Hz)

High Speed Fiber Optics (5 kHz)*"
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Finite Element Output & 100 Hz Fiber Optic
Sensors
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Impact test, Strain Data time history
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Isolating Mode Shapes
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2"d mode strain distribution (26.5 Hz)
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2"d mode deflection comparisons (26.5 Hz)
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Impact test, Accelerometer vs. High Speed

Fiber Optics (5 modes) Test
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Concluding Remarks

FOSS Benefits

* Provides >100x the number measurements at 1/100 the total sensor weight

» Increases capability of measuring multiple parameters in real time (strain, temp., accel, liquid
level, shape, applied loads, stress, mode shapes, natural frequencies, buckling modes, etc.)

* Provides comprehensive datasets to validate loads / dynamics models

For most full-scale structural dynamics applications, FOSS sample rates (16,000
sensors at 100sps) are sufficient

LSP has funded studies to explore FOSS potential for high frequency launch
vehicle applications

A single hybrid interrogation scheme that gleans the benefits of two different FBG
sensing technologies, WDM and OFDR, has been developed and demonstrated

* OFDR acquires higher density FOSS measurements (16,000) and lower speed (100Hz)
 WDM acquires FOSS measurements at higher speed (35kHz) and lower density (~80/fiber)
Conducted impact testing / modal surveys to 525 Hz

Obtained good correlation between FOSS derived accels and accelerometer
measurements, thus demonstrating feasibility

FOSS has the potential to “break the rules” for DFI; it can be used throughout
loads/dynamics modeling effort (from ground to flight) by providing an
unprecedented understanding about system/structural performance of LV/SC
throughout the vehicle life cycle
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FOSS State of the Art (SOA) Comparison

Conventional strain FOSS sensors
gages
FOSS is 0.1 — 1% the weight of strain gages
(based on past trade studies)
No. of sensors
m Length = 0.25 in Diameter = 0.004 in
Space / LV
s 3
Parameters <train strain, temp., shape,
Sensed magnetic field...

Temperature Nonlinear sensitivity; Linear sensitivity;
correction varies from lot to lot constant from lot to lot
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Sensitivity to
EMI / EMP res jo
Embeddable? No Yes
Tvpical 2 man days for 40 ft fiber
yP 4 hrs / 1SG (2000 strain sensors);

installation

uses SG techniques
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Continuous Grating Fiber Current Fiber.

Technical Advantages

* No separation between measurements

« Allows measurement density as fine as 1/32”
« Laboratory demonstrated

« Fiber Cost: Approx $150/meter

Continuous Grating Fiber:

Adaptive Spatial Density Algorithm
* |f collected at full capability, data sets would become extremely large
 Algorithm collects only the data necessary to characterize the

structure at each instant
— Measurement density increases at high strain gradients
— Sensitivity and minimum measurement spacing can be adjusted

* Reduces data analysis and investigation time
 Algorithm has already been developed and demonstrated
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Compact Fiber Optic Sensing System (cFOSS)
|

1

e cFOSS designed to meet the demanding requirements of next generation
advanced unmanned as well as manned vehicles

e  With increased sample rate, decrease power, volume and weight cFOSS will
be capable of meeting small to large scale vehicle health monitoring
requirements

e cFOSS capable of sampling multiple fibers simultaneously up to 100Hz,
producing 1000’s of measurements at %” intervals.

e Alighter weight convection cooled version(cFOSS v1.0@5.8lbs) and a ) on
conduction cooled version(cFOSS v2.0) has been developed to meet the Antares 1 FY13-15)
needs of a wide range of operating environments. R

Accomplishments

e  Flight demonstrated cFOSS v1.0 onboard UAV

e Completed design and fabrication of components for cFOSS v2.0 ready for
system integration

e Collaborating with KSC and Orbital to fly cFOSS v2.0 on an ELV in FY16

e The previous generation FOSS was a 2013 R&D 100 Winner

Lower surface
Fiber installation

National Aeronautics and Space Administration

-
Proposed cFOSS v1.0 3 oSS
Design cFOSS v1.0 ‘
Original Flight FOSS System cFOSS v1.0 onboard
Onboard Global Observer APV-3
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cFOSS v1.0 System Specs.

 Targeted specifications:

s * Fiber count: 4

b= « Max Fiber length: 80 ft

45 « Max # sensors/system: 8,000

£ « Max Sample rate: 100 Hz

£ . Power: 50W @ 28Vdc

) «  Weight(w/o enclosure): ~Blbs

= « Size (w/o enclosure): 3.5x5.7x12in a
o . . . _

% \Cl)l_%r1ag;)n and Shock(targeted):NASA Curve A (DCP CFOSS v1.0
c

o  Altitude (w/o enclosure ): 15kFt

§ « Applications:

© — UAVs

=N+ Target system cost: $35K

all - Convection cooled model

©
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e T T e

————

CFOSS v1.0 onboard APV-3
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cFOSS Preliminary Box Design

ptical Network and
laser power
converter

Tunable laser
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