NASA AERONAUTICS RESEARCH INSTITUTE

WHERE TO LAND

A Reachability Based Forced Landing Algorithm for Aircraft Engine Out Scenarios

Jinu Idicula - NASA Armstrong
Kene Akametalu, Mo Chen, Claire Tomlin, Jerry Ding - UC Berkeley
Loyd Hook - UTulsa
11/17/2015

Outline

1. Where To Land (WTL)
2. WTL1 \rightarrow WTL2
3. Engine Out Case
4. Aircraft Reachability
5. Cost Map Development
6. Dynamics Model
7. NASA TCM Model
8. Optimal Trajectory Generation
9. WTL2 C code
10. Test Cases
11. Hardware in the Loop (HIL) Simulation
12. Future Work

	UC Berkeley	- Algorithm Design - Reachable Sets - Hybrid Mode Switching
	NASA Armstrong	$\begin{array}{ll} \hline- & \text { WTL C Code } \\ - & \text { S/W V\&V } \\ - & \text { HIL Simulation } \end{array}$
	U. Tulsa	- NYC Cost Map - S/W Requirements

Emergency Landings

Where To Land

- Where To Land (WTL) is a emergency forced landing algorithm developed by UC Berkeley
- Inflight emergency \rightarrow vehicle forced to land
- What is the optimal landing location that will minimize loss of life and minimize property damage given a set of constraints
- What is the optimal trajectory required for the aerial vehicle to reach optimal landing location?
- WTL attempts to mimic an expert pilot's decision making and land the aircraft

WTL Algorithm

Pre-Planning - pre-compute trajectories using fault location, maps and reachable sets
Real Time Update - adapt emergency trajectory based on real time data (weather, occupancy, etc.)

Innovation

Prior Forced
Landing Algorithms

- Simple dynamics model
- Assumes aircraft can return to runway
- Difficult to apply to autonomous vehicles
- Haven’t been flight tested
- Provides safety guarantees for S/W V\&V
- Higher fidelity aircraft model
- Fast computation
- Manned or unmanned vehicles
- Modular design

WTL1 Phase 1 Results

UC Berkeley Campus

Emergency Landing Location

Emergency Trajectories

Demo: MATLAB sim Location: UC Berkeley Vehicle: Quadrotor Failure: 90% thrust 2D Trajectory

Phase $1 \rightarrow$ Phase 2

- Reduce the scope of WTL
- Simplify WTL \rightarrow Speed up software development
- Find "real world" design/implementation issues
- Get pilot feedback with HIL simulation
- Collect data to improve future versions
- WTL1 \rightarrow WTL2
- NASA TCM/B-757 aerodynamics model
- No real time update \rightarrow compute trajectories during fault
- No global cost map \rightarrow NYC/New Jersey area~100+ miles
- No Fault detection \rightarrow One predefined fault, dual engine failure
- HIL 6DOF nonlinear aircraft simulation
- Develop tools to generate reachable trajectories

WTL Development Plan

WTL2 Architecture

WTL2 Algorithm

1. Get current aircraft state

- Latitude/Longitude
- Altitude/Heading/Velocity

2. Convert states to local frame
3. Compute maximum glide range
4. Window cost map with max range
5. Get reachable set for altitude
6. Scale and project reachable set over map with heading
7. Find best reachable landing location using 2D convolution
8. Generate trajectory using optimal path planner
9. Generate latitude/longitude waypoints
10. Generate target headings

HIL Simulation Architecture

Engine Out Scenario

- Complete loss of thrust
- Engine out during takeoff is the most critical
- WTL2 Operational Range: $1000 \mathrm{ft}-4000 \mathrm{ft}$
- Less than $1000 \mathrm{ft} \rightarrow$ Can only land straight ahead
- Greater than $4000 \mathrm{ft} \rightarrow$ Can often return to airport
- Glide range will vary based on aircraft and configuration (i.e. weight, flaps)
- During failure \rightarrow pilots must manage energy
- Flying at $\mathrm{L} / \mathrm{D}_{\text {MAX }}$ maximizes aircraft range
- L/D MAX $^{\text {MA }} \rightarrow \alpha_{\text {MAX }} \rightarrow$ gross weight $\rightarrow \mathrm{V}_{\text {GLIDE }}$
- Flying at $\mathrm{V}_{\text {GLIDE }}$ will maximize aircraft range

Reachability

Reachability - Given a dynamic system governed by some differential equation and input defined over some bounded state space. What are all the states visited by the trajectories of the system

- Reachability is a key technology for verifying safety critical systems ${ }^{7}$
- Reachability assures that a system can reach a target state while remaining within a safety envelope ${ }^{7}$
- Level Set Toolbox - computes reachable sets of hybrid systems with continuous dynamics using nonlinear ODE's ${ }^{3}$
- Grid based computation

Aircraft Reachability

Aircraft Reachability is gliding aircraft model with NASA TCM aerodynamics formulated as a PDE (HJ) and solved using the Level Set Toolbox. Aircraft trajectory has two modes. The two mode states are stitched together using a hybrid system model.

Mode 1 - Approach Mode

- TCM aerodynamics
- Glide equations
- Glide velocity
- Constant radius turns
- State constraints

Mode 2 - Landing Mode

- TCM 30° flap aerodynamics
- Landing velocity
- State constraints

States

- Aircraft position
- Velocity
- Flight path and heading angles

Control

- Angle of attack
- Bank angle

Reachable Set

Reachable sets are a set of initial states from which the system is guaranteed to remain inside a safe region while eventually reaching a desired target ${ }^{3}$

State Constraints

V - Stall avoidance α, ϕ - Keeps aircraft within performance envelope
Acceleration - structural load limits

Reachable Set

Discrete Reachable Sets

- Reachable sets generated every 100 ft from $1000 \mathrm{ft}-4000 \mathrm{ft}$
- Grid size 10E4x10E4 ft
- Normalized and stored as a binary map
- Oriented onto global map using aircraft heading

Cost Ma0

- Hazard Map - constructed from population and geographical data
- Impact Map - constructed from density maps, land use maps, etc.
- Total Loss Map = Hazard Map + Impact Map
- Map Size: 7201x5401 pixels (3.5+ million pixels)

Gliding Aircraft Equations

- 3D motion of gliding aircraft over flat Earth
- Model assumes coordinated turns, no sideslip

$$
\begin{array}{rlrl}
\dot{X} & =V \cos \gamma \cos \xi \\
\dot{Y} & =V \cos \gamma \sin \xi \\
\dot{Z} & =V \sin \gamma \\
\dot{V} & =-\frac{D(\alpha, V)}{m}-g \sin \gamma \\
\dot{\gamma} & =\frac{L(\alpha, V) \cos \phi}{m V}-\frac{g}{V} \cos \gamma \\
\dot{\xi} & =\frac{L(\alpha, V) \sin \phi}{m V \cos \gamma} & \text { Aircraft velocities } \\
\begin{aligned}
V_{\text {glide }} & =\sqrt{\frac{2 W}{\rho S \sqrt{C_{D}^{2}+C_{L}^{2}}}}
\end{aligned} \quad \text { Aligraft acceleration } \\
\text { Heading derivative } \\
\text { Optimum glide velocity }
\end{array}
$$

NASA TCM Model

- Nonlinear aircraft model developed by NASA Langley for NASA's Aviation Safety Program
- Transport Class Model (TCM) closely replicates B-757 aerodynamics
- For WTL2, TCM aerodynamics tables $\left(C_{L}, C_{D}\right)$ are used
- On landing transition to 30° Flap aerodynamics
- Compute L/D $\mathrm{DAX}_{\text {MA }}$ and $\alpha_{\text {MAX }}$

Optimal Landing Location

0	Reachable Node
\bullet	Searched Node
\square	Landing Footprint

- Landing footprint is based on aircraft ground roll and impact area
- Optimal landing location = smallest total sum cost over landing footprint
- Found using 2D Convolution with FFT

Optimal Trajectory Generation

- Dubins trajectory - gives shortest path between two points
- requires final location and final heading
- target heading here is the heading required to reach final landing location
- Two basic maneuvers
- Gliding (maximize glide range)
- Turning (final orientation)
- Optimal turn radius - minimize energy loss with a constant radius turn

WTL2 C Code

- Dependencies
- GSL (Numerical Library)
- GDAL (GIS Library)
- Makefile
- generates executable for ARM, x86 processors
- ccompcert \rightarrow safety critical C compiler
- V\&V
- Use JPL Flight S/W Best Practices (JPL DOCID D-60411)
- Run code coverage tool
- Memory debugging tool
- Unit tests for critical functions
- Test Cases

Test Cases

Test \#	Altitude (ft)	Latitude	Longitude	Initial Heading
1	1000	40.70°	-73.8726°	270°
2	1000	40.70°	-73.8726°	15°
3	1000	40.85°	-73.70°	270°
4	4000	40.70°	-73.8726°	270°
5	4000	40.70°	-73.8726°	15°
6	4000	40.85°	-73.70°	270°
7	4000	40.85°	-73.70°	15°
8	3026	40.865	-73.88°	220

- Altitude variation - Bounded by two altitudes
- Altitude < $1000 \mathrm{ft} \rightarrow$ Can only land straight ahead
- Altitude $>4000 \mathrm{ft} \rightarrow$ Should be able to return to airport
- Heading variation - Show effects of initial heading on trajectory
- Position variation - Show effects of initial position on trajectory
- Case \#8 replicates US Airways 1549 failure

National Aeronautics and Space Administration

Results: Test Case 1

National Aeronautics and Space Administration

Results: Test Case 2

Results: Test Case 3

Results: Test Case 4

National Aeronautics and Space Administration

Results: Test Case 5

Results: Test Case 6

National Aeronautics and Space Administration

Results: Test Case 7

Results: Test Case 8

land at [1115,1224]

WTL2 HIL Simulation

Future Work

- "Online" WTL \rightarrow Fast Estimator/Online Reachable Set
- "Adaptive" WTL \rightarrow Dynamic trajectories
- WTL on Smartphones, Linux, PixHawk
- WTL + RTA (Run Time Assurance) framework
- WTL + Backward Reachable Controllers

Loss of Thrust	
TCM/B-757	Common A/C Faults Linux Local Static Cost Map WTL2 (current)
Linux, Mobile, PixHawk	
	Global Dynamic Cost Map

Impact

- General Aviation
- Pilots tend to less experienced
- Mostly single engine aircraft
- Commercial
- Pilots are experienced and well trained
- Multi engine aircraft
- Unmanned Vehicles
- Flight Termination Systems
- Lost Link Mode

General Aviation	Can improve odds of survival
Commercial	Gives pilots more options
Unmanned Vehicles	Can enable expanded UAS in the NAS

Distribution

1. WTL Design: AIAA Conference Paper
2. WTL2 Implementation: AIAA Conference Paper
3. WTL2 NASA Technical Memo
4. NASA NARI Presentation

References

1. Mitchell, I., Bayen, A., and Tomlin, C.J., "Computing Reachable Sets for Continuous Dynamics Games Using Level Set Methods"
2. Tomlin, C., Lygeros, J., and Sastry, S., "A Game Theoretic Approach to Controller Design For Hybrid Systems"
3. Ding, J., Gillua, H., Huang, H., "Hybrid Systems in Robotics"
4. Adler, A., Bar-Gill and A., and Shimkin, N., "Optimal Flight Paths for Engine Out Emergency Landing"
5. Rogers, D., "The Possible 'Impossible' Turn"
6. Atkins, E., "Emergency Landing Automation Aids: An Evaluation Inspired by US Airways Flight 1549"
7. Bayen, A., Mitchell, I., Oishi, M., and Tomlin, C.J., "Aircraft Autolander Safety Analysis through Optimal Control Based Reach Set Computation"
8. Shkel, A., and Lumelsky, V., "Classification of the Dubins Set"
9. Hueschen, R., "Development of the Transport Class Model Aircraft Simulation from a Sub-Scale Generic Transport Model Simulation"
