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Overview

• Aerogel Basics/Applications

• Relevant prior work involving polyamides and 
polyimides

• Hurdles
– The first step growth polyamide aerogel

• Optimization of completely aromatic systems

• Results
– Density

– Porosity

– Surface area

– Compressive strength

– Dielectric measurements

• Conclusions/Acknowledgements



National Aeronautics and Space Administration

www.nasa.gov 3

Typical monolithic 
silica aerogels

What are aerogels?

• Highly porous solids made by drying a wet gel 

without shrinking

• Pore sizes extremely small (typically 10-40 

nm)—makes for very good insulation 

• 2-4 times better insulator than fiberglass under 

ambient pressure, 10-15 times better in light 

vacuum

• Invented in 1930’s by Prof. Samuel Kistler of 

the College of the Pacific

Sol Gel Aerogel
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Potential applications

Optically transparent antennae for use 

with solar components

Flexible Insulation 

for spacesuits

Low dielectric antenna substrates

Durable/Fire 

resistant 

structural 

insulation

Insulation for crucial 

mechanical components
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Basic polymer aerogel processing

Cross-linker

Syringe Mold

Solvent

Exchange 

(acetone or 

Ethanol)

Supercritical

CO2 drying

Polymer

solution Cross-

linked gel

Solvent 

exchanging 

in ethanol

Solvent 

removed/

Aerogel

4 STEPS
1. Polymer solution prepared

2. Cross-linking agent is added and the 

mixture is poured into a mold

3. The resulting gel is solvent exchanged 

with a SCF compatible solvent such as 

ethanol

4. The solvent is then removed using an 

SCF such as carbon dioxide
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Polymer Aerogels vs. Silica Aerogels

6

Recently developed polyurea

and polyimide aerogels have 

Young’s moduli that are 

orders of magnitude larger 

than traditional silica aerogel.

The motivation behind 

investigating stepgrowth

polyamide aerogels is to see 

if we can obtain species that 

are even stronger. 
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Early literature involving polyamide aerogels

+

Desmodur RE (TIPM) Trimesic acid (TMA)

90°C, anh. DMF 

(-CO2)

TIPM

TMA

TIPM
TIPM

• Made via non-conventional 

amide forming methodology

• No control over chain length

• Glove box conditions

• Long reaction times

• High temperature

• Attempts at polymer chain 

formation lead to precipitation

Leventis et. al. J. Mater. Chem., 2011, 21, 11981

X

90°C, anh DMF

(-CO2)

.........

Precipitate

......... X

X,Y=Aromatic 

Y

X Y YX
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Polyimides as a Model for Polyamide Aerogels

Comparable to polyimide aerogel 

processes. 

Similarities include:

1. Analogous polymerization between 

diamines and diacid chlorides

2. Crosslinking through the use of a 

trifunctional monomer (higher 

degrees of functionality are also 

possible)

3. Quick reaction times

4. No glove box required

5. Low temperature reaction conditions

6. Polymer chains that stay in solution
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Cross-linked Polyamides (general)

Polymer 41 (2000) 8487-8500 

Niesten et. al.

Aromatic amines do not 

require a catalyst

Aliphatic amines do require a 

catalyst (Et3N)

0°C, NMP

n=20-30

0°C, NMP

X

X=Aromatic

Y=Aromatic or 

Aliphatic

Y

X Y YX
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Potential features of polyamide aerogels

• Wide range of properties

– From flexible/soft to rigid/strong

– Hydrophobic/Hydrophilic

– Colorless (maybe translucent/clear)

– Low cost (monomers, cross-linker)
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Completely aromatic systems

Advantages: 
1. No catalyst required (NMP 

complexes with HCl)

2. Amine end caps make mixture 

stable to moisture indefinitely.

3. Reaction mixtures remain 

homogenous

4. Reactions undergo reliable 

gelation (more user friendly than 

acid chloride endcaps)

5. Control over rigidity

One problem 

remained……….

DMBZ

Isophthaloyl chloride

[

]n

NMP, Room temperature

NMP, 0°C

Cross-linked Polyamide
Network
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Optimized vs. Non-optimized Systems

Left two figures:

Polyamide 

aerogels before 

procedure 

optimization.

Right two figures: 

Three different 

polyamide 

aerogels (and 

SEMs) made via 

and optimized 

procedure.
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Optimization of Polyamide Aerogels

• To minimize distortion, the following reaction 

parameters were examined and optimized

– Reaction and Cross-linking temperature

– Stirring time/Stirring speed

– Concentration of solutions 

– Cross-link density

– Order and manner of addition of the reactants

– Monomer species
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Samples From Optimized Procedure

Isophthaloyl chloride, terephthaloyl chloride, m-phenylene 

diamine, 0.10g/cm3, 93% porous, 192 m2/g.

Terephthaloyl chloride, 0.33g/cm3, 77% porous, 384 

m2/g.
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Monomers 

1,3,5-Benzenetricarbonyl

 trichloride (1,3,5-BTC)

Isophthaloyl chloride 

(IPC)
Terephthaloyl chloride 

(TPC)
m-phenylenediamine 

(mPDA)
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Aerogel Synthesis

16
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Experimental design study 

• Face-centered 

central composite 

design

• 15 different data 

points to model full 

quadratic equation

• 4 repeats of the 

center point to 

assess error
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Results: Density

• Density increases as 

the fraction of the para 

substituted acid 

chloride increases.

• Density increases as 

the concentration of 

solids in the gel 

increases.

• n-value or length of the 

polymer chains, is not 

a significant factor for 

density

• Standard 

deviation=0.016

• R2=0.98
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Results: Porosity

• Porosity decreases as 

the fraction of the para 

substituted acid 

chloride increases.

• Porosity decreases as 

the concentration of 

solids in the gel 

increases.

• n-value of the polymer 

chains is not a 

significant factor for 

porosity.

• SD=1.26

• R2=0.98
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Surface area

• All three variables 

significant

• Data was log 

transformed before 

fitting to normalize 

data 

• S.D. = 36.64

• R2=0.88
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Dielectric and Loss Tangent
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Compressive Strength
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Young’s Modulus
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1. Guo et. al. ACS. Appl. Mater. Interfaces, 2011, 3, 

546-552.

2. Leventis et. al. J. Mater. Chem. 2011, 21, 11981-

11986.

3. Fricke et. al. J. Non-Cryst. Solids, 1988, 100

169-173.
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Conclusions/Summary

• A simple procedure for the fabrication of polyamide 

aerogels has been developed and optimized

• A series of polyamide aerogels were produced that 

having densities  ranging from 0.06g/cm3 to 0.3g/cm3, 

high porosities (77-93% porous), and surface areas 

as high as 426m2/g 

• Diverse properties arise through controlling monomer 

types, stoichiometry and weight percent solids

• Remaining work

– Examine new monomer species

– Experiment with different crosslinking methodologies

– N-alkylate for hydrophobicity
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