Extreme Oxidative Durability of TBCs on Ti₂AIC MAX Phases

James L. Smialek, Brian J. Harder, and Anita Garg NASA Glenn Research Center, Cleveland, OH

> Materials Science and Technology Columbus, OH, October 4-9, 2015

Motivation and Rationale Ti₃AIC₂, Ti₂AIC, Cr₂AIC

- α -Al₂O₃ formers
- Na₂SO₄ corrosion resistance
- CTE close to YSZ, α -Al₂O₃
- Damage (Strain ?) tolerance, nano-laminate shear, machinable
- Thermal shock resistance: ~1400°C quench
- $K_{IC} \approx 7 \text{ MPa/m}^{1/2}$

Hybrid Concepts (EBC/TBC) Enabled by MAX Phases Intermediate CTE, Strain Tolerance, YSZ Compatibility Liner, Seals, Bond Coats (?)

СТЕ	E, 10⁻ ⁶ /°C		-
YSZ	12	Top Coat	
Al ₂ O ₃	9	Scale	< Critical interface
Ti ₂ AlC Ti ₃ AlC ₂ Cr ₂ AlC	10 9 13	Bond Coat, Substrate	
Rene N5 SiC CMC (Mo, Nb,	5 15 4 Ti alloys 1	Substrates	

Damaged scales: 2000 1-h cycles at 1150°C Ni(Pt)Al on CMSX-4 (ridges, rumpling, and ratcheting)

Commercial Ti₂AlC 211 MAXthal (Sandvik/Kanthal) M. Sundberg, G. Malmqvist, A. Magnusson, T. El-Raghy, 2004

8000 cycles to 1350°C!

YSZ TBC Coatings on Al-MAX Phases

S.O.A. Baseline: Ni(Pt)Al/YSZ on CMSX-4 at 1150°C Less than 1000 h furnace cycle life

- APS **AND** PS-PVD (~80-100 μm)
- Ti₂AlC (CTE 10); Cr₂AlC (CTE 13); grit blast
- Stepped, interrupted furnace test
 - 1100°, 1150°, 1200°,1250°, 1300° C
 - 500 h at each temperature

Interrupted Oxidation of APS YSZ on Cr₂AIC

Interrupted Oxidation of PS-PVD YSZ on Cr₂AIC

YSZ Coated side: DTS: Delayed Desktop TBC Spallation

APS YSZ on Cr₂AlC 1150°C, 400 hr

5 mm

7.5x optical

CTE Matched Ti₂AlC, Al₂O₃, YSZ

Interrupted Oxidation of APS YSZ on Ti₂AIC

APS Edge Failure on Ti₂AlC 1300°C, 300 h

Failed APS TBC 1300°C, 500 h

Mixed TBC/TGO Failure (APS TBC on $Ti_2AIC 1300^{\circ}C$, 500 h)

Interrupted Oxidation of PS-PVD YSZ on Ti₂AIC

Intact PS-PVD TBC (Ti₂AIC,**1300°C**, 500 h) **optical**

TBC Life Comparisons:

- Bond Coats/Superalloy (cyclic)
- Ti₂AIC substrates (stepped T, intermittent)
- Compiled literature EB-PVD life, TGO vs T
- "Critical TGO thickness" \approx 7 μm
- TGA Life projections:
 - Pt-Al/CMSX4 (life time t_c for 7 μ m)
 - Ti_2AIC (time t_c for 35 µm)
 - Compare life t_c vs T

TGO Thickness Compared to Literature:

Alumina Scale Thickness at TBC Failure

EB-PVD TBC FCT Life on Alumina-Forming Systems

EB-PVD TBC FCT Life on Alumina-Forming Systems

Thermal Stress Balance of Forces (1200°C, 20 μm scale, 2 mm substrates)

(CTE <i>,</i> 10-6/K)	stress, GPa	stress, GPa	
substrate	σ Al ₂ O ₃ (9.3)	σ YSZ (11.7)	
Ti ₂ AIC (10.2)	-0.52 Comp.	0.06	
Cr ₂ AlC (13.1)	-2.06 Comp.	-0.04	
Rene'N5 (16)	-3.71 Comp.	-0.14	

Strain Energy Failure Criterion A.G. Evans, H.E. Evans (2001, 2011)

(CTE, 10-6/K)

substrate	x, μ (Al ₂ O ₃)	T (°C)	Γ (J/m²)
Ti ₂ AlC (10.2)	35	1300	14
Cr ₂ AIC (13.1)	5	1150	28
Rene'N5 (16)	10	1150	175

Oxidative Durability of TBCs on MAX Phases Summary

- YSZ survived 1300°C on Ti₂AIC
- Ti₂AIC substrates, scale adhesion surpass Cr₂AIC
- PS-PVD superior to APS
- $35 \ \mu m \ Al_2O_3$ for $Ti_2AIC \ vs \ 7 \ \mu m$ for Ni(Pt)AI
- 30x life equivalence @ 1150°C (20,000 h)
- CTE ⇒ stress ~1/7 metal system
 ⇒ strain energy 1/12 metal at failure