

Zero Boil Off System Testing

David W. Plachta Wesley L. Johnson Jeffrey R. Feller

NASA Presented at the 26th Space Cryogenics Workshop Phoenix, AZ June 26, 2015

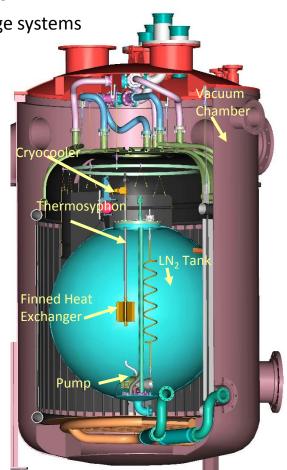
Executive Summary

Objectives

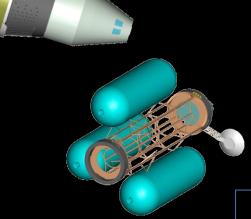
- Advance technology to enable spaceflight systems capable of storing LOX in space with zero boil-off
 - Task funded by Space Technology Mission Directorate
- Conduct ground demonstration with active thermal control technologies to demonstrate ability to achieve LOX ZBO. Tank and structures (conductive heat paths) should be representative of designs for flight loads.
 - Validate design of tube-on-tank distributed cooling network at 95.6K

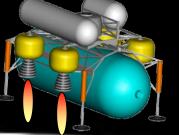
Approach:

- Integrate a reverse turbo-Brayton cycle cryocooler with a propellant tank to achieve zero-boil off LN2 storage (LOX surrogate) with low thermal and flow loss.
- Demonstrate ability to control tank pressure using active cooling system.


Results:

- An extensible and low-loss integrated design of distributed active cooling has been proven.
 - No loss propellant storage has been demonstrated with less than 4K thermal gradient, from top to bottom
 - Robust ability to control tank pressure demonstrated


Active Cooling Background/Definitions


- NASA's future mission architecture's cryogenic propellant based stages will require long duration in-space storage of LH₂ and LO₂
- Propellant losses due to solar insolation and planetary albedo for these long duration missions must be minimized to insure mission cost effectiveness and success
 - Analysis has shown that use of a cryocooler to "actively" cool the LO2/LH2 storage systems becomes the mass efficient approach for missions longer than a few weeks
- Following a NASA depot study, focus has been on Cryogenic Boil-Off Reduction System to cool large tank surface areas
 - 2007 study by Glenn and Ames
 - Bench testing at Ames
 - 2009 system test at Ball
 - 2011 trade study at Glenn
- Boil-off reduction is accomplished by distributed or *broad area cooling (BAC)*
 - A transport gas (typically neon or helium) is cooled by the cryocooler and then circulated through a tubing loop covering the outer surface area of the propellant tank
 - The transport gas efficiently distributes the cooling capacity of the cryocooler throughout the surface of propellant tank storage system

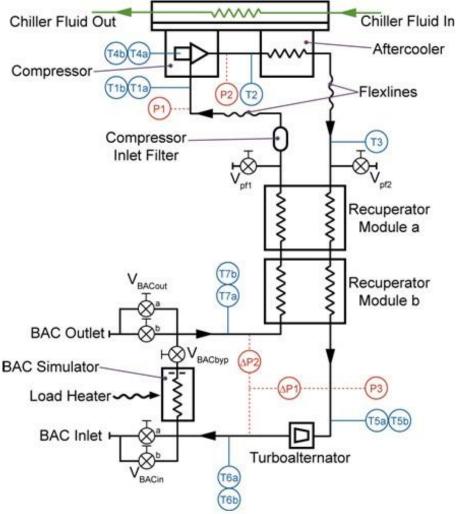
Objectives

- Three main objectives:
 - Demonstrate robust ZBO
 - Use the cryocooler to control tank pressure
 - Operate cryocooler over extended period of time
 - Use cryocooler to reduce tank pressure
 - Find if homogenous pressurization model can be accurately used
 - Eliminate boil-off at low fill levels
 - Condition will occur for in-space propellant depots and for multi-burn upper stages
 - Low fill level cryogenic tanks exacerbates tank stratification
 - Validate Scaling Study
 - D. Plachta, M. G. (2014). Cryogenic Boil-Off Reduction System Scaling Study. Elsevier, www.elsevier.com/locate/cryogenics.
 - Predicts ZBO inclusion reduces mass for loiter periods > week, when compared to MLI only, as used for cryogenic propellant storage

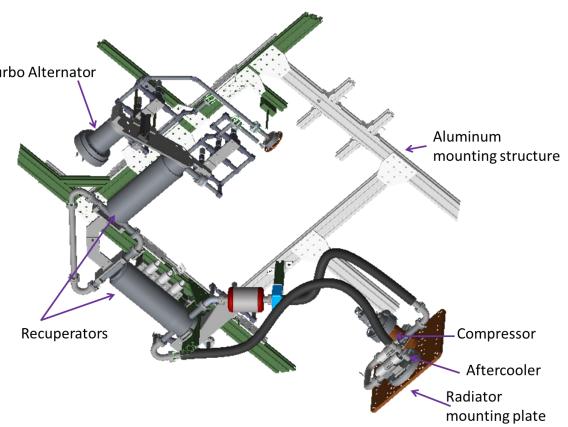
Facility and Hardware

NASA

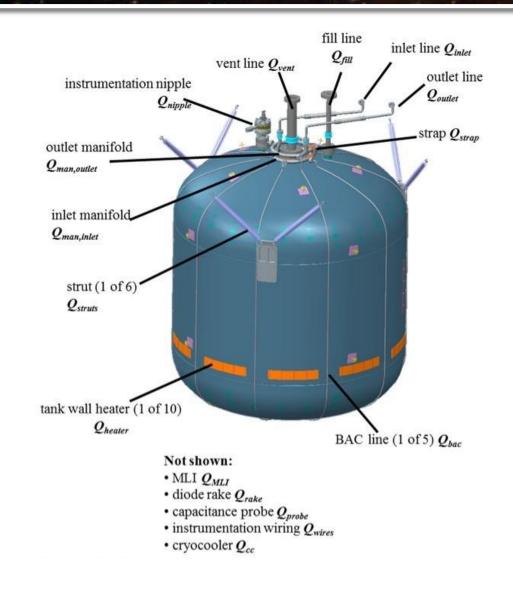
- NASA GRC's SMiRF
 - Low Earth Orbit thermal environment
 - Cryoshroud use to create 220 K background temperature
 - Diffusion pumps create average hard vacuum of 1x 10⁻⁶ torr
 - LN₂ as LOX surrogate
 - Assumed LOX propulsion requirement at 25 psi, 95.6 K
 - Pressurized LN_2 to 82 psi, 95.6 K
- Test article assembled to vacuum chamber lid
 - Ring supported from lid
 - Cryocooler, radiator, and tank supported from ring
 - Tank diameter 1.2 m, volume 1.2 m³
 - Tank struts 0.38 m long, wall thickness 0.8 mm (.032")
 - Radiator aluminum panel 4 mm thick, loop heat pipe design



Instrumentation


_	Location	Count	SD/TC	Notes – Purpose	
	Diode Rake	8	8/0	Liquid temperature and liquid level indication. Key sensors at 96.9, 87.2, and 28.4 % full.	0
	Tank Wall	13	12/1	Exterior tank temperatures at top, bottom, and between cooling loops.	
	BAC System	28	21/7	Measure BAC system temperatures (cooling tubes, manifolds, and thermal strap)	C
	Penetrations	16	6/10	Two at warm and two at cold end of vent, fill/drain, and cap probe. Used for heat leak calc's	
	Struts	26	2/24	Two at warm and two at cold ends. Heat leak calculations.	
	Radiator	25	0/25	Map radiator performance.	
	MLI	11	0/11	Determine MLI temperature profile.	
	Supports/cabling	12	0/12	Used to find misc. heat leak through wire bundles & suspension hardware.	
	Cryoshroud	18	0/18	Boundary temperature definition and control.	BA
	Tank Pressure	2	NA	Measure and control tank pressure. Range of sensors were 0-50 and 0-100 psia.	
	Boil-off Flow	4	NA	Mass flowmeters used to measure boil-off rates	
	Tank/Strut Heaters	14	NA	Warm up tank, warm liquid, and set warm boundary temperature on struts	

Cryocooler Instrumentation:


Cryocooler and MLI

- Cryocooler: Creare reverse turbo Brayton cycle
 - Flight like design, based on the NICMOS cryocooler flown on Hubble
 - Integrated circulator for distributed cooling of neon at Turbo Alternator
 2 g/sec, 2 atm
 - Capacity 15 W at 77 K
- Tank MLI
 - 75 layers of double aluminized Mylar
 - Traditional MLI design, 2 blankets 38 layers each
 - Seems butted and stich taped every 5th layer
 - 2 sheets of Dacron netting between Mylar layers
 - 1% perforations in outer 2-mil cloth reinforced Mylar
 - Layer density 24 layers/cm

Broad Area Cooling System

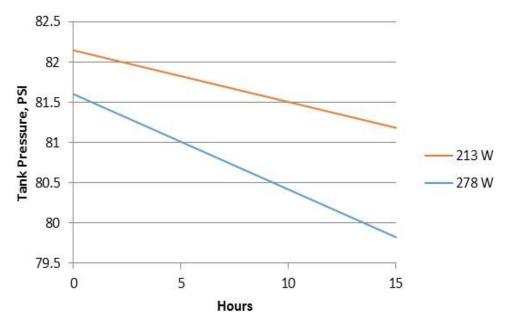
- Tube-on-tank design
 - ¼" tubes spot welded every foot
 - Tubes epoxied down length
 - Supply and return manifolds used at tank top to feed cooling loops
 - 5 loops run down tank wall
 - Spacing every 36 degrees around tank
 - No trim valves or orifices used
 - 4.2 m line length on tank
 - Cryocooler supply and return hoses 1 m long
 - 0.25 psi pressure drop

NA S

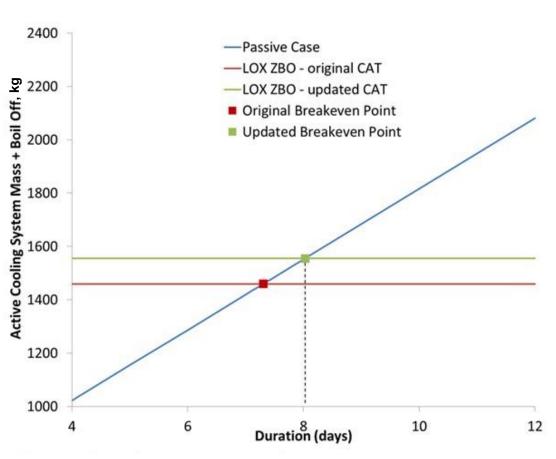
	Fill Level	Туре	Purpose	
Test 1	95%	Passive boil-off	Find tank heat leak	
Test 2	95%	Passive Pressurization	Find tank pressure rise rate	
Test 3	95%	ZBO	Achieve ZBO; collect data	
Test 4	95%	ZBO high power	Find robustness of ZBO system	
Test 5	95%	ZBO low power	More data to map pressurization rate with cooler power	
Test 6	2BO destratification		Find tank pressure rise rate with tank heat added while at ZBO	
Test 7	95%	ZBO high power 2	More data to map pressurization rate with cooler power	
Test 8	25%	ZBO	Achieve ZBO; collect data	
Test 9	9 25% ZBO high power		More data to map pressurization rate with cooler power	
Test 10	95%	Passive boil-off with cryoshroud set to 300K	Additional MLI data point for tank applied system	

Component Results

NASA


- Broad Area Cooling
 - Dropped temperature gradient between tank top to tank bottom
 - Test 1—Passive—gradient was 10.2 K
 - Test 3 gradient was 3.8 K
 - Tube-to-tank thermal gradient was 0.5 K
 - More than expected, but heat exchanger effectiveness was 0.9
 - Loss caused ~ 0.5 W increase in cryocooler input power
 - Tube-to-tube gradient was insignificant
 - No noticeable change in 5 BAC tube temperatures
 - Structural and thermal optimization of tube-on-tank configuration is required for flight
- Cryocooler
 - Thermally, the cryocooler performed same as bench test
 - % of Carnot ranged from 10.6 for Test 3 and 12 for Test 4.
 - High power settings dropped tank pressure
 - Tank pressure changes were akin to a battery for storing cryocooler power
 - Integration and control remain a challenge
 - Control of power setting and pressure feedback loop required

- Parasitics
 - No design or model before test; average loss was 4.2
 W
 - Poor performing Mylar tape on return manifold
 - Improved insulation projected to reduce parasitic to ~1.2 to 1.5 W
 - Flight configuration needed to design and model parasitic loss realistically


Revisiting Test Objectives

- Objective 1: Demonstrate robust ZBO
 - Cryocooler temperature setting used to control tank pressure to within +/- 0.1 psi
 - Cryocooler operated over 19 day period
 - Cryo stored without venting
 - High power settings used successfully to reduce tank pressure
 - Tank pressure dropped at rate consistent with uniform temperature pressurization model
 - Tank pressurization rate dropped 88% with active cooling
 - Test 2 tank pressure increased 36.2 kPa (4.6 W heat)
 - Test 6 tank pressure increased 1.3 kPa (2.6 W heat added to ZBO tank via heaters)
 - » dP/dt/W of tank heat leak dropped 88%
- Objective 2: ZBO at low fill level
 - High degree of stratification at low fill level did not affect cryocooler operation
 - Tank top temperature increased from 98.7 to 98.9 K
 - » Much lower than Test 1, 105.2 K
 - Cryocooler input power slightly increased (0.6%) from full tank ZBO power level to achieve ZBO

Revisiting Test Objectives

- Objective 3: Validation of Scaling Study (Cryogenics, D. Plachta, 2014)
 - In study, in-space loiter time break even point determined
 - Break even point is duration when Passive mass, MLI + boil-off, equals Active mass, MLI + cryocooler + radiator + solar array
 - » For LOX with 7.5 m tank, 186 m³, 318 tank heat loiter period *break even point was 7.3 days*
 - Many assumptions in study
 - Test data used to update Cryogenic Analysis Tool (CAT)
 - » Most significant update was for parasitic loss
 - Dry mass increased 6.5%
 - » Shifted break even point from 7.3 to 8 days
 - Test data confirms and validates predictions of scaling study

Summary

- First of its kind demonstration of robust tank pressure control using cryocooler system
 - No venting, no mixing
- Tank stratification was cut dramatically
 - Unvented/unmixed tank pressurization rate was cut, per Watt heat leak, by 88%
 - Homogenous tank pressurization model validated
 - Tank lid to tank bottom temperature gradient dropped from 10.2 to 3.8 K
 - Tank mixer not required when active cooling system is operational
- Full ability of cryocooler system demonstrated
 - Tank pressure controlled to +/- 0.1 psi
 - Cryocooler decrease tank pressure at controlled rates at different levels of excess capacity
 - High power cryocooler operation to drop tank pressure could eliminate or reduce in-space battery requirement
- Test has validated Scaling Study, predicting large mass savings for applying ZBO to cryo upper stages
- Test series advance technology readiness level
- Test has reduced risk for future flight projects

