Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

Space Cryogenics Workshop
June 25-26, 2015
Phoenix, AZ

Greg Zimmerli1, Geoff Statham2, Rachel Garces3, Will Cartagena3

1NASA Glenn Research Center, Cleveland, OH
2ESSSA, Huntsville, AL
3NASA Marshall Space Flight Center, Huntsville, AL
Introduction

Cryogenic Propellant Storage and Transfer (CPST) mission and the EDU

- CPST was being developed by NASA under the Space Technology Mission Directorate to demonstrate cryogenic fluid management technologies (storage, liquid acquisition, transfer, gauging) in space for up to 3 months
- An Engineering Development Unit (EDU) was built to provide a “Proof of Manufacturability” for the Flight Article.
- The Flight article was not built due to reformulation of the project at the direction of the STMD office.
- Ground based LH2 testing of the EDU was completed
- This talk focuses on the liquid acquisition device data

CPST concept
Screen channel Liquid Acquisition Device

- **Construction**
 - U-shaped channel; open side is covered with stainless steel screen
 - Screen side faces tank wall
 - Wetted screen pores allow liquid to pass through, but prevent vapor ingestion up to the bubble point pressure, ΔP_{BP}

$$\Delta P_{BP} = \frac{4\gamma}{D_P}$$

- **Advantages**
 - Screen channel LAD’s support higher flow rates
 - More robust against adverse accelerations (spacecraft maneuvers)
 - Can be characterized to some degree in 1g

- **Disadvantages**
 - Complex construction
 - LAD channel not easily refilled in presence of non-condensable pressurant gas

Dutch twill weave, 325 x 2300 weaves/inch
EDU test article

- Aluminum tank 67” x 91”
- LH2 testing conducted at MSFC TS-300
- 20 days of testing to quantify performance of various subsystems (6/12/14 – 7/1/14)
EDU liquid acquisition device (LAD) design

- 325 x 2300 screen channel gallery arms (based on seam welding capability)
- LAD arms extended only to the top of the storage tank barrel
- Three (3) different LAD configurations to determine the best method for mitigating heat transfer into LAD arms
 - Bare LAD; +TVS conditioning (did not function); + Foam insulation
In 1g, the screen channel LAD can support a liquid filled vertical column up to some height, \(H_{\text{max}} \)

\[
H_{\text{max}} = \frac{\Delta P_{\text{BP}}}{(\rho_L - \rho_V)g} = \frac{4\gamma}{(\rho_L - \rho_V)gD_p}
\]

For the 325x2300 screen mesh used in these tests, \(D_p = 14.0 \) microns

- LAD screen “breakdown” happens when the pressure exceeds the bubble-point pressure (e.g., \(H > H_{\text{max}} \)) and vapor is ingested.
- Fluid flow creates additional pressure drop (decreasing \(H \))
Curved Arm Perforated Plate/Screen Assembly

Back Side – LAD Straight Sections

Screen Side – LAD Straight Sections

LAD’s were bubble-point tested to 0.8 psid in IPA prior to integration.
LAD assembly and installation

Connection to tank outlet

Integrated into tank shell
Tank fill/drain operation

- The excerpt from the CPST EDU Schematic Rev B below shows the fill/drain flow path.
- All storage tank fill and drain operations are through the LADs. There is not an alternate path for either fill or drain operations.
LAD silicon diode sensors (Temperature, wet-dry)

- Internal Diode D4438
- Screen Diode D4437
- Screen Diode D4440
- External Diode D4439
- External Diode D4442
- Diode Not Functional for LH2 Test
- Diodes Shown in Picture
LAD testing and “breakdown”

- Tank is initially filled above 75% fill, completely submerging the LAD
- Tank level decreases due to boil-off and outflow tests
- LAD diodes are monitored to determine when gas has been ingested ("breakdown")
- Tank is refilled to conduct more tests

68.7% internal LAD diode – *when this diode goes dry, LAD is considered broken down.*

TBD minute hold at TBD% fill

Predicted isothermal no-flow break down at 32% fill ($\Delta h = 0.81$ m), based on 325 mesh bubble-point data.
Silicon diodes are run “hot” (30 mA) when in wet-dry mode.

- The T reading during wet-dry mode is obviously not accurate. It is based on an DT-670 voltage vs T table (valid for 10 \(\mu\)A) extrapolated to negative temperatures.

- Dry-wet transitions during filling differ due to lead resistance. This did not affect the analysis, which was done manually.
LAD test events

- Data was analyzed from the following test events:
 - Day 13, LAD outflow #1
 - Day 19, LAD outflow #2-4
 - Day 20, LAD outflow #5, 6

Day 19; Outflow tests 2-4
All three LAD arms break down between 44% - 46% fill level
Ullage temperature near LAD is 22.4K
(Top of LAD is at 75%; predicted isothermal, static breakdown is at 32% fill)
All three LAD arms break down between 67% - 70% fill level (foam-insulated LAD is last to breakdown)
Ullage temperature near LAD is 35 – 40 K
(Top of LAD is at 75%; predicted isothermal breakdown is at 32% fill)
LAD outflow tests #3 and #6, warm helium, shows similar result
All three LAD arms break down between 55% - 56% fill level (approaching and during the no-flow hold).
Ullage temperature near LAD is 23.5 K
(Top of LAD is at 75%; predicted isothermal, static breakdown is at 32% fill)
Lad outflow #5; cold helium (AFT diffuser)

All three LAD arms break down between 45% - 47% fill level

Ullage temperature near LAD is 22.0K
<table>
<thead>
<tr>
<th>Test Day</th>
<th>Event</th>
<th>Liquid Level (%)</th>
<th>Holds</th>
<th>Pressure Source</th>
<th>Ullage Temp (K)</th>
<th>Ullage Pressure (psia)</th>
<th>Flow rate (GPM)</th>
<th>Column height at breakdown (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>LAD Outflow #1</td>
<td>45</td>
<td>N/A</td>
<td>AFT</td>
<td>22</td>
<td>32</td>
<td>9.7</td>
<td>57</td>
</tr>
<tr>
<td>19</td>
<td>LAD Outflow #2</td>
<td>68</td>
<td>N/A</td>
<td>FWD</td>
<td>35-40</td>
<td>32</td>
<td>12.4</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>LAD Outflow #3</td>
<td>67</td>
<td>N/A</td>
<td>FWD</td>
<td>35-40</td>
<td>32</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>LAD Outflow #4</td>
<td>55</td>
<td>5m @63% 5m@55%</td>
<td>AFT</td>
<td>24</td>
<td>32</td>
<td>9.8 to 0</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>LAD Outflow #5</td>
<td>45</td>
<td>30m@65% 5m@56%</td>
<td>AFT</td>
<td>22</td>
<td>23</td>
<td>7.3</td>
<td>57</td>
</tr>
<tr>
<td>20</td>
<td>LAD Outflow #6</td>
<td>68</td>
<td>N/A</td>
<td>FWD</td>
<td>32</td>
<td>23</td>
<td>7.9</td>
<td>13</td>
</tr>
</tbody>
</table>

- Warmer ullage temperature has adverse effect on breakdown height
- Warmer fluid at screen affects local surface tension

\[H_{\text{max}} = \frac{\Delta P_{BP}}{(\rho_L - \rho_v)g} = \frac{4\gamma}{(\rho_L - \rho_v)gD_p} \]

- Flow through the screen also creates a pressure drop, which would further decrease the column height at breakdown (forward work)
- Warm pressurant may be OK if accompanied by a large reduction in g
Many people contributed to the EDU: Special thanks to...

<table>
<thead>
<tr>
<th>Rafiq Ahmed</th>
<th>Dawn Phillips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marius Asipauskas</td>
<td>Chris Popp</td>
</tr>
<tr>
<td>Denny Bartlett</td>
<td>Matthew Pruitt</td>
</tr>
<tr>
<td>Dr. Jim Blackmon</td>
<td>Mike Reynolds</td>
</tr>
<tr>
<td>Leo Bolshinsky</td>
<td>Joey Scarfo</td>
</tr>
<tr>
<td>Shane Carpenter</td>
<td>Andrew Schnell</td>
</tr>
<tr>
<td>Dave Chato</td>
<td>David Sharp</td>
</tr>
<tr>
<td>Melanie Dervan</td>
<td>Richard Sheller</td>
</tr>
<tr>
<td>Andy Hissam</td>
<td>Myron Tapscott</td>
</tr>
<tr>
<td>Kim Holt</td>
<td>Steve Tucker</td>
</tr>
<tr>
<td>Frankie Jernigan</td>
<td>Alicia Turpin</td>
</tr>
<tr>
<td>Maureen Kudlac</td>
<td>Ron Unger</td>
</tr>
<tr>
<td>Jim Martin</td>
<td>Norris Vaughn</td>
</tr>
<tr>
<td>Michael Middlemas</td>
<td>Arthur Werkheiser</td>
</tr>
<tr>
<td>Rob Minor</td>
<td>Hunter Williams</td>
</tr>
<tr>
<td>Jeff Oliver</td>
<td>Rob Wingate</td>
</tr>
<tr>
<td>Lila Paseur</td>
<td>Craig Wood</td>
</tr>
</tbody>
</table>