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Solar Electric Propulsion
Technology Demonstration Mission

e High-power SEP can be enabling for both near-term and future
exploration architectures and science missions

e NASA is maturing mission design for a 50kW-Class SEP Demonstration
— Most mature concept is the Asteroid Redirect Robotic Mission
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Long-Term, Stable Asteroid Storage for Crew Access

The contours on the plot depict energy states in the Earth-Moon A spacecraft at L2 is actually orbiting Earth

System and the relative difficulty of moving from one place to another. at a distance just past the Moon, however
if you look at it from the Moon, the orbit will
look like an ellipse around a point in space
giving them the name “halo orbits”.

The interaction of the Earth and Moon creates
bends in the energy contours that can be used
to lower the energy needed to move around
the Earth-Moon system and beyond, such as
this example of a low energy transfer between
Liand 2.

The leverages these

equilibrium and low energy contours to enable a stable
7% EARTH SURFACE orbit with respect to the Earth and Moon, that is

accessible with about the same energy as L1 or L2

Credit: Williams, G. and Crusan, J., “Pioneering Space — the Evolvable Mars Campaign,” April 2015.

Earth-Moon Lagrange points provide stable, crew-accessible destination while
expanding exploration capability toward long-term deep-space operations

— Serve as a staging point for large cargo masses en route to Mars



High-Power SEP Critical to NASA Exploration Vision
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Credit: Williams, G. and Crusan, J., “Pioneering Space — the Evolvable Mars Campaign,” April 2015.

e High-Power SEP systems required to move large masses in interplanetary space
— Leveraged in a multi-use, evolvable space infrastructure 5



Block 1 Block 1a

(SEP/Chem) + 250 to 400-kW Solar Array
» 50-kW Solar Array * 190-kW Solar Array « 150 to 200-kW EP System
* 40-kW EP System * 150-kW EP System « 16-t Xenon Capacity With Xe
» 10-t Xenon Capacity * 16-t Xenon Capacity Refueling Capability

Credit: Williams, G. and Crusan, J., “Pioneering Space — the Evolvable Mars Campaign,” April 2015.

e High-Power SEP systems required to move large masses in interplanetary space
— Leveraged in a multi-use, evolvable space infrastructure 6



NQ}*? Asteroid Redirect Robotic Vehicle Conceptual Design




High-Power SEP Technology Investments

NASA is developing the requisite technologies for a 50kW-Class Solar
at higher power levels

Electric Propulsion Demonstration to enable SEP missions and applications
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@Ion Propulsion System and Thruster Requirements

e Reference lon Propulsion System (IPS) capability

Capability Value
Total system power 40 kW
Maximum specific impulse 3000 s
Xenon throughput 10,000 kg
String fault tolerance Single
Solar range 0.8-19AU
Input voltage range 95-140V

e Attributes of a single HERMeS thruster assuming 40 kW EP Power divided by 3
active EP strings and one non-operating spare (assumes PPU efficiency is 94%)

Attribute Value

Maximum input power to PPU 13.3 kKW

Maximum discharge power 12.5 kW

Discharge voltage at 3000s I, 800 V

Discharge current at 3000s I, 15.6 A

Service life (unmargined) 50,000 h

Minimum discharge power 6.25 kW (50% maximum power)




IPS Functional Block Diagram
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HERMeS Thruster Development Status

e NASA GRC and JPL developed 12.5 kW Hall Effect Rocket with Magnetic
Shielding (HERMeS) to demonstrate viability and address mission risks
— Hall Thruster Lifetime Qualification
— Ground Test Facility Effects
— Spacecraft Accommodation < 3

25

10

35

e First Technology Demonstration Unit (TDU-
1) fabricated and extensively tested

— Operating envelope (blue) spans 300-800 V, 8.9-
31.3A(3.5:1), &6.25-12.5 kW 0 !
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— TDU-1 testing has demonstrated operating points
(red) aslowas 300V, 2 A

Discharge Voltage (V)

e Performance and plume mapping: including facility effects characterizations, magnetic
field strength optimization, magnetic field symmetry assessment, cathode flow fraction
characterization, and plume flux, energy, and charge state

e Multiple thermal characterizations to quantify thermal margin
e Wall probe measurements to verify magnetic shielding require for long-life

e Second thruster (TDU-2) being fabricated for environmental testing

11



&%) TDU-1 Performance, VF5 at NASA GRC, May 2015
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HP-120V PPU Development Status

Low
Voltage

Input Bus

High
Voltage
Input Bus

HP-120/800V PPU Design HERMeS
Quter

Magnet _ImIZl
Inner
Magnet

4 8 . ‘ ’

Discharge Discharge Discharge  Discharge 95 - 140V
odule #1 Module #2 Module #3 - Module #4 Unregulated
& 1/0 Power ' Outputs

— Module ...

y HVB/LVB and Disch-arge‘ =

MCM = Master Control Module

e 13.3 kW HP-120V Full-Bridge Topology otz

Telemetry

Power Processing Unit (PPU) developed
to demonstrate viability and address
mission risks

— PPU development schedule

(4 x 200V, 20A
modules)

Discharge Supply

Keeper
/lgnitor

Heater

SCB-MCM

¥ &Uﬁ

Legend

| MCM | Master Control Module

| SCB | System Control Board - JPL

— Pinero, et al, JPC 2015

e Brassboard unit developed and tested over operating range 2 — 14 kW, 95 —
140 V input, and 200 — 800 V output demonstrating 94.0 — 95.5% efficiency

— Ambient functional testing

— Vacuum performance characterization

— HERMeEeS thruster compatibility testing including 12.5 kW, 3000 s thruster design point 13



Xenon Feed System (XFS) Single String
and Single High Pressure Components
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e XFS consists of four elements:

8 seamless, aluminum-lined COPV tanks (60
cm diam. X 305 cm long)

1 Pressure Management Assembly (PMA)
4 Xenon Flow Controllers (XFC)

Isolation valves, service valves, tubing
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IPS Transition for Flight

Acquisition for most major IPS components has been initiated to meet the Dec.
2020 ARRM launch date
— Draft Request for Proposals (RFP) issued for Engineering Development Unit (EDU) EP String
e Option for Qualification Model (QM) and Flight Model (FM) Hardware

¢ Includes thruster, PPU, and XFC

— With some additional development, the NASA in-house HERMeS thruster and HP-120V PPU
designs could become the basis for future flight NASA missions

EP String Procurement Event Date (Subject to Change)

Draft RFP Release May 21, 2015
Industry Conference June 10, 2015
Comments on Draft Due June 22, 2015
Final RFP Release July 14, 2015
Proposal Due Date August 28, 2015
Contract Award March 29, 2016

— Draft Request for Proposals (RFP) for pathfinder, prototype xenon tank pending

Acquisition of up to 10 metric tons of xenon being carefully planned to avoid

market price run-off or disruption of availability 15



@ Conclusions

e NASA is developing a high-power SEP systems required to move large masses in
interplanetary space as part of a multi-use, evolvable space infrastructure

e NASA is maturing mission design for a 50kW-Class SEP Demonstration
— Most mature concept is the Asteroid Redirect Robotic Mission

e NASA is developing the requisite technologies for the SEP TDM, including
ARRM, to enable these SEP missions and applications at higher power levels
— HERMeS is a 12.5 kW Hall thruster co-developed by GRC and JPL for operation up to

3000 s specific impulse and a 50 kh lifetime that is enabled through the use of
magnetic shielding

— HP-120V PPU is a 13.3 kW full-bridge topology PPU capable of operating the
HERMeS thruster at the 12.5 kW, 3000 s operating point and demonstrated
efficiencies up t0 95.5%

* Anlon Propulsion System design has been developed for the Asteroid Redirect
Vehicle utilizing a 3 + 1 EP string architecture based on the NASA in-house
developed technologies and their demonstrated performance

e Acquisition for most major IPS components has been initiated to meet the Dec.
2020 ARRM launch date (EP strings, xenon tank, xenon propellant in pIanning)16
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