

Modification Plans For The NASA 5.2 Second Drop Tower

David Urban

Purpose of this presentation

- Introduce a proposed one-year design study for a CoF action to upgrade the current 5.2 second Zero-g facility at GRC to:
 - Increased the capabilities and reduce the operational costs of the Zero-g facility
 - Include a new capability for a Supercooled Large Droplet (SLD) Icing Facility.

Project goals

- Enhance NASA's capability to perform micro/partial gravity experiments
 - Optimize space flight research (basic and applied)
 - Be prepared to maximize science and technology development for exploration and planetary science in the post-ISS era.
 - Expand the ground-based program by providing inexpensive access to reduced-gravity
 - Reduce operational costs and increase utilization rates
- Create a unique capability for SLD icing research
 - Simulation of the entire range of in-flight icing conditions (i.e. conventional icing, freezing drizzle, and freezing rain)
 - Provide the icing community with tools for means of compliance with new regulations
 - Enhance NASA research in SLD icing physics
 - Create publicly available databases for evaluation of SLD capable computational tools
 - Provide the capability for development and evaluation of ice protection/detection systems to be used in SLD conditions

Agenda

- Drop Tower Expansion Background
 - Current Facility
 - Currently operating drop towers (partial list) and other ground-based facilities
- Research Areas Enabled By This Proposal
- Supercooled Large Droplets (SLD)
 - Capability Needs
 - Design Issues
- Integrated Concept
- Proposed Plan / Status

NASA Zero-g Facility

- GRC Zero-g Facility became operational in 1966
- No major mods since then
- Over 4900 drops
- Utilization rate: 2 drops/day
- Operational cost: \$5.8 K/drop; 74 labor hrs/drop
- Microgravity Duration: 5.18 s
- Free Fall Distance: 432 ft (132 m)
- Gravitational Acceleration: <0.000,01 g
- Deceleration: 35/65 g mean / peak
- Payload Cylindrical, 42 in. (1 m) diameter by 13 ft. (4 m) tall
- Gross Vehicle Weight: 2500 lbs. (1130 kg)
- Experimental Payload Weight: up to 1000 lbs. (455 kg)

Zero-g Facilities Background

- Current world-wide Drop Tower capability is little changed in decades despite major technology growth
- Exceptions
 - ZARM-Bremen -- launch capability provides 10 seconds of micro-g
 - Portland State University -- rapid drop turnaround provides 2 seconds of micro-g with increased productivity and innovation
- Planetary exploration plans raise new research needs in partial gravity that cannot be satisfied on low-g aircraft alone (NASA terminated support in 2015)
- Partial gravity research largely ignored despite substantial technical importance for both fundamental science and exploration needs

Current Layout

National Aeronautics and Space Administration

Research Areas Enabled By This Proposal

- Combustion Science (high pressure engine research)
- Spacecraft Fire Safety (exploration atmospheres flammability)
- Extra Terrestrial habitat fire safety
- In-situ Resource Utilization (reactor design, regolith behavior)
- Interfacial Phenomena (fluid control on spacecraft and E.T.)
- Fluid Physics (life support systems)
- Materials
- Fundamental Physics
- Plant Biology
- Aeronautics (Supercooled large Droplet Icing)

Supercooled Large Droplet Facility Concept

Capability Needs

- The certification envelope for flight in icing conditions has recently been expanded to include larger droplet conditions than have been previously considered
 - Freezing drizzle ($100\mu m \le d_{max} \le 500\mu m$)
 - Freezing rain ($d_{max} > 500 \mu m$)
- No current icing test facility can adequately reproduce SLD icing conditions for the entire range
- Experimental and computational tools are needed to evaluate the impact of SLD on aircraft and aircraft sub-systems
 - Facility for direct simulation of exposure to SLD
 - Data for development and validation of computational simulation tools
 - Assess impact of SLD on current and future aircraft configurations
 - Current commercial transports and rotorcraft
 - Assessment of future configurations (N+2/3 aircraft)
 - UAV

Airframe Ice (Super-Cooled Liquid Droplets)

• Supercooled Liquid Droplet < 100 micron

Supercooled Large Droplets (SLD)

- Freezing Drizzle (100-500 micron)-FAA Appendix O in 2014/2015 (Limited Low Droplet Drizzle Range IRT Icing Data Available)
- Freezing Rain (>500 micron- FAA Appendix O)-FAA Appendix O in 2014/2015 (No Icing Data Available)

Facility Issues

- Cloud Uniformity
 - Stratification due to gravity for horizontal tunnels
 - Inertial effects due to passage through a contraction section
- Thermal Equilibrium
 - Distance from spray bars to test section
- Dynamic Equilibrium
 - Distance from spray bars to test section
- Drop Breakup
 - Shear forces on the drops in short contraction sections
- Facility Parameters
 - Drop size
 - Cloud drop distribution
 - Cloud liquid water content
 - Velocity range
 - Temperature range

Icing in the Zero-G Facility

A recent study identified the characteristics of an icing wind tunnel capable of generating icing conditions that would encompass the full range of the SLD environment. This study concluded that such a facility would be a vertical flow icing wind tunnel with a 150ft section between the spray bars and the test section. This study also estimated the cost for such a facility as being approximately \$60-70M. This current technology development study would investigate use of the Zero-G facility as a more affordable alternative to a stand-alone vertical flow icing tunnel.

National Aeronautics and Space Administration

Integrated Concept

Integrated Concept

- Potentially Preserve vacuum drop capability
 - Peerless micro-g facility
 - Would use new smaller tube to provide more room
- Install Mag-lev drop tower adjacent to vacuum vessel
 - Use full depth plus mezzanine, ~520 ft
 - Throw packages from the bottom for increased time
 - Reduced deceleration levels, ~15 g
 - Fail-safe, crane-less operation
 - 30 drops/day
- Install Supercooled Large Droplet Facility
 - ~200 feet
 - Requirements TBD
- This redesign would render the 2.2 s tower (Bldg 45) superfluous (opportunity for footprint reduction)

Airline Concept

Animation

Airline Concept

Airline Concept

-5

Maglev Concept

Ongoing discussions with General Atomics and InTraSys

Primary discussion points

- Weight of entire payload 2,000 to 2,500kg including LIM (or LSM)
- Ability to achieve 10-5 g vibration levels during test
 - GA does not believe this LIM configuration alone will provide the required low frequencies (10 g). It may be a few orders of magnitude greater. A second suspension system (internal to the payload module)

may be required to dampen the payload to the required g-loading.

- Configuration Concept is based on a vertical LIM
- Power requirements
 - Tradeoffs 4g vs 15g acceleration levels

Summary @ 2,000kg Package,					
quality level = 1E-6g	Time		Power		
Total thrown time 15g/15g	10.83	S	1.6E+07	watt	
Total thrown time 4g/15g	10.42	s		watt	
Total thrown time 4g/4g	10.00	s	3.86E+06	watt	
Total thrown time 1.5g/4g	9.33	s		watt	
Total thrown time 1.5g/1.5g	8.66	s	1.25E+06	watt	
Perspective: 7 MW is approx. mechanical power output of a Top Fuel dragster (Source: Wiki)					

Maglev Concept

- Linear induction motor
 - Keep dropped mass as small as possible
- Gramme winding
 - Very small force ripple
- Axial length of reaction structure
 - Must be integer number of wavelengths of the LIM
 - Reason: force ripple

Magley Concent

ISO 1

www.nasa.gov

23

Magley Concept **SECTION VIEW 2 SECTION VIEW 1**

SECTION VIEW 3

National Aeronautics and Space Administration Backup: g-level comparison

www.nasa.gov 27

Backup: g-level comparison

Proposed Plan

- Initiate one-year engineering design study funded through GRC facilities contract
- Participants:
 - HEOMD:SLPS (Space Life & Physical Sciences)
 - HEOMD:AES (Advanced Exploration Systems)
 - ARMD: Aircraft Icing
- Study Milestones
 - Phase 1 Kickoff ~August 1, 2015 (20 weeks)
 - Phase 1 Final Report NET Dec 21 2015
 - Down select
 - Initiate Phase 2 study February 1 2016
 - Design out-brief July 2016, go-no go decision
- Further develop business case in FY15
- Pursue complete design FY17
- Construction FY18/19
- First drops (and droplets) FY20

Conclusion

• Are there any other details for g-level quality required or facility capability or test duration that we should include in the requirements?