

A Trip to Mars Wish List for Apparel and Habitat

Presented by Evelyne Orndoff NASA Johnson Space Center

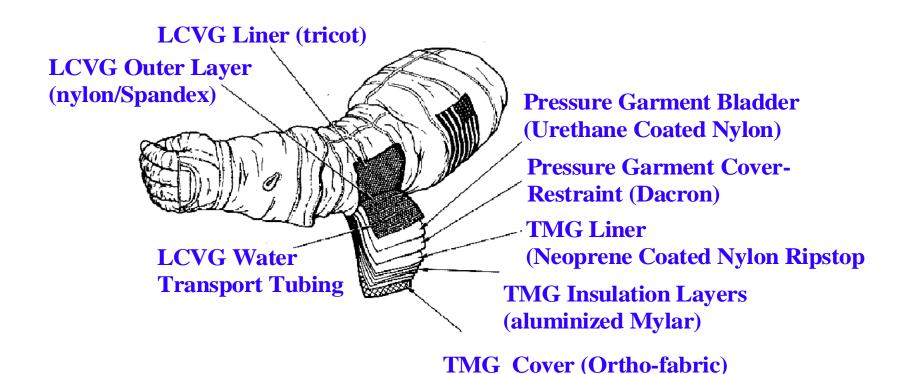
Overview

- Needs for new space suit
- Mars environment
- Needs for cabin apparel
- Needs for habitat
- Review of past and current studies

Space Suit

Materials that protect against:

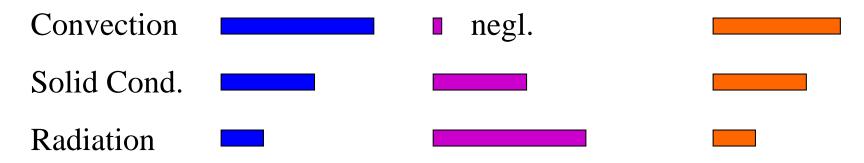
Thermal extremes


Secondary Ejecta

Cuts and Punctures

Abrasion and wear from dust

Current Suit Arm Segment -Details Of Protective Garment-


Needs For Mars Insulation

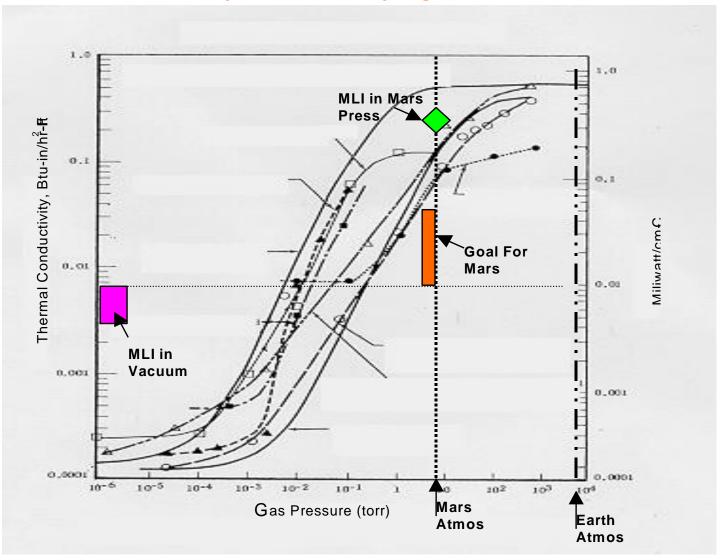
-Comparison of Environments for Human Exploration-

	Earth	LEO/Moon	<u>Mars</u>
Temperature	-60/ +130 F	-250/ +250 F	-150/+60 F
Pressure/ Gases	760 torr N2, O2	<10-6 torr trace	8 torr 95% CO2

Surface Heating/Cooling Relative Effects

Mars Environment and Space Suit Thermal Parameters

	Parameters		
Location	(Representative Cold Mars Environment)		
Atmos./ Surface Temp	189 to 227 K (-120 to -50 F)		
Sky Temp	142 K (-203 F)		
Suit Sink Temp	211 to 227 K (-80 to -50 F)		
Radiator Sink Temp	177 to 205 K (-150 to -90 F)		
Atmos. Press.	8.5 hPa (6.4 torr)		
Wind Speed (m/s)	10		


Basis For Materials Selection

Traditional spacesuit MLI for vacuum applications DOES NOT work

• Lofty non-wovens **DOMINATE** garment applications for extremely cold environments

Effect of Gas Pressure On Thermal Conductivity --Multi-Layer and Cryogenic Insulation--

Cabin Apparel

Routine wear

Exercise wear

Sleepwear

Special occasions

Clothing Usage Rates on the International Space Station (1998-present)

Name	Mass (kg)	Usage Rate (No. of days)	No. of Items for 1 Year	
Crew Preference Shirt (Long Sleeve)	0.55	15	13	
Crew Preference Shirt (Short Sleeve)	0.45	15	13	
Cargo Shorts	0.35	30	5	
Cargo Pants	0.65	30	7	
Trousers	0.6	30	3	
X-Static T-Shirt	0.3	14	27	
Colored T-Shirt	0.25	7	53	
Underwear	0.1	2	183	
X-Static Crew Socks	0.08	14	27	
Crew Socks, White	0.08	7	53	
Athletic Shorts	0.15	7	53	
Total Mass (kg) - 1 Crew		75		
Total Mass (kg) - 6 Crew		451		

Recent changes to the Crew Provisioning Catalog

- A changing Joint Crew Provisioning Catalog with
 - 1. introduction of new items (i.e. polyester exercise tops, belts per crew preference)
 - disappearance of some items

 (i.e. X-Static shirts, and custom made shuttle pants per depletion of inventory)
- A beginning of on-orbit clothing studies

Needs for Cabin Apparel

Lightweight knitted and woven durable and washable fabrics made of inherently flame retardant long staple fibers and microfibers, dyeable or printable, UV, high frequency microwave, and ozone resistant.

Fast drying fabric in air

Garments with bio-monitoring and drug delivery functions

Needs for Routine Wear fabrics

Inherently flame retardant and non toxic lightweight, comfortable, aesthetically pleasing Dyeable, printable, and colorfast Washable and resistant to UV, high frequency microwaves, and ozone

Dry fast in air

Needs for Exercise Wear Fabrics

Lightweight breathable

Fast drying

Non clammy when wet

Washable, and resistant to chemical and physical sanitation methods

Bio-monitoring

Needs for Sleepwear and Special Occasions

For sleepwear comfortable inside a sleeping bag flame retardant, non toxic soothing colors and prints For special occasions medical use, drug delivery, fever reduction public appearance, private events

Needs for Habitat

Multi-purpose Cargo Transfer Bags (MCTB)

While preserving the acoustic quality of the MCTB, a choice of colors may be desirable, pleasant appearance and texture of the two outer layers may be desirable whether the MCTB is in a bag or blanket configuration (looks clean or not), etc.

Needs for Habitat

Crew Quarters

Fabrics that are cleanable/wipe-able

Fabrics that are air permeable enough to allow the noise to travel through the top layer and reach the acoustic treatment layer to absorb sound

Fabrics where particles do not become embedded especially for those instance where there is high crew contact (like clothing, CQs, etc.). This would help with the pleasant appearance of items especially if different colors are an option

Colored fabrics that have higher reflectivity to increase visible light (we currently use mostly white fabrics because it has high reflectivity). Typically don't use colored fabrics because they absorb light (decrease amount of visible light) which results in needing more lighting (increases heat, power, mass, volume, etc.)

Any combinations of these needs would also be ideal.

Concluding Remarks

Needs for new fibers, yarns, and fabrics to address safety, logistics reduction, duration of Mars mission, health and human factors