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The proposed research aims to develop an integrated two-phase flow 

boiling/condensation facility for the International Space Station (ISS) to serve as 

primary platform for obtaining two-phase flow and heat transfer data in 

microgravity. 

Overriding objectives are to:

1. Obtain flow boiling database in long-duration microgravity environment

2. Obtain flow condensation database in long-duration microgravity 
environment

3. Develop experimentally validated, mechanistic model for microgravity flow 
boiling critical heat flux (CHF) and dimensionless criteria to predict minimum 
flow velocity required to ensure gravity-independent CHF

4. Develop experimentally validated, mechanistic model for microgravity 
annular condensation and dimensionless criteria to predict minimum flow 
velocity required to ensure gravity-independent annular condensation; also 
develop correlations for other condensation regimes in microgravity

Overriding Objectives of FBCE
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Consists of:

 nPFH sub-loop

 Water sub-loop

Contains three test modules:

 Flow Boiling Module (FBM)

 Condensation Module CM-HT for heat 

transfer measurements

 Condensation Module CM-FV for flow 

visualization 

Condensation Module CM-HT

Condensation Module CM-FV

Layout of FBCE

Flow Boiling Module (FBM)
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Primary 2014 – 2015 Research Topics 

1. Both One ge and Parabolic flight flow boiling 

experiments using single-sided and double-sided heat 

walls

2. Modeling of CHF for single-sided and double-sided 

heated walls at different orientations in Earth gravity 

and in microgravity

3. Computational modeling of condensing film
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Flow Boiling Facility
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Heated Wall Design
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Top wall heating

Bottom wall heating

Double-sided heating

Horizontal Flow Boiling – Heated Wall Configurations
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Slightly subcooled flow at low velocity
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Separated Flow Model for Double-Sided Heating
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Interfacial Lift-off CHF Model
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CHF Model Predictions
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Single-sided Heating Double-sided Heating

Single-sided versus Double-sided Heating in Earth Gravity
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CHF Predictions for Single-sided versus Double-sided Heating in Earth Gravity
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Data Sharing Plans
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Impetus for Data Sharing

 NASA Office of Physical Science Informatics (PSI) tasked with 

organizing and distributing databases to researchers in the field

 Large databases (terabytes of data) will be generated from FBCE 

ISS experiment

 Purdue-Glenn team will create organization structure for FBCE 

databases to be provided to (PSI) 

 Purdue is presently exploring most effective means for packaging 

data for ease of use by other researchers using recent FBM 

Earth’s gravity data as example
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Organizational Structure of FBM Database

Folder Name:
Summer 2015 
FBM Testing

Organization
al Documents

Publications, 
Presentation, 

and 
Summaries

Data Folders
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Data Folders

Contain four filetypes:

 Text Files containing raw sensor data output by data acquisition system

 Matlab Scripts for processing raw data

 Excel Spreadsheets containing all relevant parameters (e.g., pressure drop, heat 

transfer coefficient, CHF) output by processing script

 Image Files for flow visualization

With subfolders used to group data by operating conditions

Data 

Folders

T&B, 2 Phase, 

3psig Accum

T&B, Near Sat, 

3psig Accum

T&B, Near Sat, 

Accum Atm

Raw Data 
(Text Files)

Data 
Processing 

(Matlab Scripts)

Processed Data 
(Excel 

Spreadsheets)

Flow 
Visualization 
(Image Files)

B, Subcooled, 

Accum Atm

Full description 
of file paths and 
data file 
structures 
found in 
“Organizational 
Documents” 
folder
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Computational 

Modeling
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 Study flow 

condensation using 

CFD solver Fluent

 Select an appropriate 

phase change model

 Study heat transfer and 

fluid flow 

characteristics over a 

broad range of 

Reynolds numbers

 Lay foundation for 

future computational 

modeling of 

complicated flow 

boiling processes

Objectives
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• Lagrangian

- Smoothed-Particle Hydrodynamics (SPH) Method:  Gingold & Monaghan 

(1977), Lucy (1977)

- Multiphase Particle-in-Cell (MP-PIC) Method: Harlow (1955)

• Eulerian

- Level-Set Method (LSM): Osher & Sethian (1955)

- Volume-Of-Fluid (VOF) Method: Hirt & Nichols (1981)

- Coupled Level-Set/Volume-Of-Fluid (CLSVOF) Method: Sussman & Puckett 

(2000), Enright et al. (2002), Tomar et al. (2005)

• Eulerian-Lagrangian

- Front Tracking Method: Unverdi & Tryggvason(1992), Tryggvason et al. (2001)

Numerical Approaches to Modeling Two-Phase Systems
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 Lee Model (1980)
Wu et al.(2007). Yang et al.(2008), Fang et al.(2010) …

Kartuzova & Kassemi (2011), Magnini et al. (2013) …

Mao (2009). Michita & Thome( 2010), Sun et al. (2012)

Phase Change Models
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 Rankine-Hugoniot jump condition

 Schrage Model (1953)

 Lee Model (1980)

Wu et al. (2007). Yang et al.(2008), Fang et al. (2010) …

Kartuzova & Kassemi (2011), Magnini et al. (2013)…

Pros:  

1.  Ease of implementation

Mao (2009). Michita & Thome (2010), Sun et al. (2012) …

Phase Change Models

Cons:  

1. Allows for phase change only along 

interface

2. Cannot maintain saturation 

temperature 

Pros:  

1.  Successfully used for 

evaporating & condensing films

Cons:  

1. Requires use of empirical coefficient γ

2. Allows for phase change only along 

interface

Pros:  

1. Ease of implementation

2. Successfully used for 

condensation processes

Cons:  

1. Not applicable for subcooled boiling

2. Requires use of empirical coefficient ri
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Computational Domain

Computational Domain, Governing Equations and Boundary Conditions 

Boundary Condition

 Axisymmetric centerline

 k-ω SST turbulence model

 Inlet uniform velocity from experimental data 

 Wall heat flux from experimental data

- Liquid Phase:

Lee model (2008)
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- Vapor Phase:

 

S
g

= - S
f

= r
i
a

g
r

g

T -T
sat( )

T
sat

 
Q = h

fg
S

f

27



www.mudawar.com

Boiling and Two-Phase Flow Laboratory (BTPFL)ASGSR 2015 November 2015

Void Fraction Results:  Climbing Film Regime
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Predictions of Average Heat Transfer Coefficient

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

G [kg/m2s]

h
a
v
g

[W
/m

2
K

]

_

Experimental

Computational

FC-72

29



www.mudawar.com

Boiling and Two-Phase Flow Laboratory (BTPFL)ASGSR 2015 November 2015

Future Computational 

Modeling
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Need for Development of In-House Code

 Fluent is able to accurately replicate experimental results, but 

“tuning” necessary for phase change model means it is not a 

reliable predictive tool

 Difficult to work with Fluent because solver code is proprietary

 Fluent very robust and can tackle wide range of problems, 

making it slower than a dedicated research code

 Fluent does not utilize cutting edge multi-phase computational 

techniques
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Current Work

Current Work

 Working with Prof. Carlo Scalo’s

group at Purdue University to 

develop a 2-D code using best 

available computational techniques

 Performing comparisons with Fluent 

to quantify in-house solver 

performance

Future Work

 Use proposed 2-D code to run select cases which can be represented 
reasonably well by 2-D domains (e.g., axi-symmetric flow condensation, slug 
flow)

 Scale 2-D code up to 3-D, highly parallelized solver, which will include 
turbulence effects, to be run on Purdue supercomputing cluster

 Begin comparing data for transient cases with 3-D geometry to prior 
experimental studies
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