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PURDUE Examples of Systems Demanding Predictive Models of Effects of Gravity on
Two-Phase Flow and Heat Transfer
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PURDUE  NASA-Supported Facilities at Boiling & Two-Phase Flow Laboratory
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PURDUE Overriding Objectives of FBCE
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The proposed research aims to develop an integrated two-phase flow
boiling/condensation facility for the International Space Station (ISS) to serve as
primary platform for obtaining two-phase flow and heat transfer data in
microgravity.

Overriding objectives are to:
1. Obtain flow boiling database in long-duration microgravity environment

2. Obtain flow condensation database in long-duration microgravity
environment

Develop experimentally validated, mechanistic model for microgravity flow
boiling critical heat flux (CHF) and dimensionless criteria to predict minimum
flow velocity required to ensure gravity-independent CHF

. Develop experimentally validated, mechanistic model for microgravity
annular condensation and dimensionless criteria to predict minimum flow
velocity required to ensure gravity-independent annular condensation; also
develop correlations for other condensation regimes in microgravity
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PURDUE Layout of FBCE
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Primary 2014 — 2015 Research Topics

1. Both One g, and Parabolic flight flow boiling
experiments using single-sided and double-sided heat

walls

Modeling of CHF for single-sided and double-sided
heated walls at different orientations in Earth gravity
and in microgravity

3. Computational modeling of condensing film
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PURDUE Flow Boiling Facility
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PURDUE Flow Boiling Module
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PURDUE Heated Wall Design
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PURDUE
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PURDUE Horizontal Flow Boiling — Flow Visualization
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RIIJV%RIIJE Horizontal Flow Boiling — Experimental CHF Results
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PURDUE Separated Flow Model for Double-Sided Heating
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PURDUE Interfacial Lift-off CHF Model
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Use separated flow model to determine axial
variations of:
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PURDUE Single-sided versus Double-sided Heating in Earth Gravity
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PURDUE CHEF Predictions for Single-sided versus Double-sided Heating in Earth Gravity
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PURDUE

Data Sharing Plans
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PURDUE Impetus for Data Sharing
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= NASA Office of Physical Science Informatics (PSI) tasked with
organizing and distributing databases to researchers in the field

Large databases (terabytes of data) will be generated from FBCE
ISS experiment

Purdue-Glenn team will create organization structure for FBCE
databases to be provided to (PSI)

Purdue is presently exploring most effective means for packaging
data for ease of use by other researchers using recent FBM
Earth’s gravity data as example
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PURDUE Organizational Structure of FBM Database
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Folder Name:
Summer 2015
FBM Testing
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PURDUE Data Folders

UNIVERSITY

Contain four filetypes:
Text Files containing raw sensor data output by data acquisition system
Matlab Scripts for processing raw data

Excel Spreadsheets containing all relevant parameters (e.g., pressure drop, heat
transfer coefficient, CHF) output by processing script

Image Files for flow visualization

With subfolders used to group data by operating conditions

Full description
of file paths and
data file

> structures
found in
“Organizational
Documents”
Data Processed Data Flow folder

Processing (Excel Visualization
(Matlab Scripts) Spreadsheets) (Image Files)

T&B, 2 Phase, T&B, Near Sat, T&B, Near Sat, B, Subcooled,
3psig Accum 3psig Accum Accum Atm ¢ Accum Atm

Raw Data
(Text Files)
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Computational

Modeling
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ANSYS Fluent Modeling
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PURDUE Numerical Approaches to Modeling Two-Phase Systems
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« Lagrangian

- Smoothed-Particle Hydrodynamics (SPH) Method: Gingold & Monaghan
(1977), Lucy (1977)

- Multiphase Particle-in-Cell (MP-PIC) Method: Harlow (1955)

* Eulerian
- Level-Set Method (LSM): Osher & Sethian (1955)

- Volume-Of-Fluid (VOF) Method: Hirt & Nichols (1981)

- Coupled Level-Set/Volume-Of-Fluid (CLSVOF) Method: Sussman & Puckett
(2000), Enright et al. (2002), Tomar et al. (2005)

« Eulerian-Lagrangian

- Front Tracking Method: Unverdi & Tryggvason(1992), Tryggvason et al. (2001)
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PURDUE Phase Change Models
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» Rankine-Hugoniot jump condition
Mao (2009). Michita & Thome( 2010), Sun et al. (2012)
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PURDUE Phase Change Models

UNIVERSITY

= Rankine-Hugoniot jump condition
Mao (2009). Michita & Thome (2010), Sun et al. (2012) ...
Pros: Cons:

1. Ease of implementation 1. Allows for phase change only along
interface

Cannot maintain saturation
temperature

= Schrage Model (1953)
Kartuzova & Kassemi (2011), Magnini et al. (2013)...

Pros: cons:

1. Successfully used for 1. Requires use of empirical coefficient y

evaporating & condensing films 2. Allows for phase change only along

interface

= Lee Model (1980)
Wu et al. (2007). Yang et al.(2008), Fang et al. (2010) ...
Pros: Cons:
1. Ease of implementation 1. Not applicable for subcooled boiling

2. Successfully used for 2. Requires use of empirical coefficient r;
condensation processes
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PURDUE Computational Domain, Governing Equations and Boundary Conditions
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Computational Domain Governing Equations
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Void Fraction Results: Climbing Film Regime
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PURDUE Predictions of Average Heat Transfer Coefficient
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Future Computational

Modeling
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PURDUE Need for Development of In-House Code
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Fluent is able to accurately replicate experimental results, but
“tuning” necessary for phase change model means it is not a

reliable predictive tool
Difficult to work with Fluent because solver code is proprietary

Fluent very robust and can tackle wide range of problems,

making it slower than a dedicated research code

Fluent does not utilize cutting edge multi-phase computational

techniques
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Current Work

Current Work

Working with Prof. Carlo Scalo’s

group at Purdue University to

develop a 2-D code using best

available computational techniques "

0 0.2

1.0 Pressure [Po| - Fluent - 192

Performing comparisons with Fluent
to quantify in-house solver |
performance T

0.4

0.8

0.2

% 02 04 06 08 Lo 0

Future Work =

Use proposed 2-D code to run select cases which can be represented
reasonably well by 2-D domains (e.g., axi-symmetric flow condensation, slug
flow)

Scale 2-D code up to 3-D, highly parallelized solver, which will include
turbulence effects, to be run on Purdue supercomputing cluster

Begin comparing data for transient cases with 3-D geometry to prior
experimental studies
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