Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

Q. Ma ${ }^{1}$, C. Boulet ${ }^{2}$, and R. H. Tipping ${ }^{3}$

Goddard Institute for

In Fig. 1, we present a comparison between
calculated half-widths (i.e., real parts of the diagonal elements of W) from the RB formalism and the ne theory. In general, new calculated results are reduced by 15% and become closer to measured data and (CC) method.

Furthermore, a re-normalization procedure can be applied to improve the accuracy of calculated off diagonal elements. we present comparisons between obtained from CC method for some selected elements of $W\left(j^{\prime}, j\right)$ (in units of $10^{-3} \mathrm{~cm}^{-1}$ atm-1.-1) with $j=4$ of $W\left(j^{\prime}\right.$,) $)$ (in units of $10^{-3} \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}$) with $j=4,6$,
and 8 in Fig. 2. As shown in the figure, the agreements are very good.
Fig. 1 Calculated half-widths of R(i) ${ }^{\circ}$ Qan Q lines from the RB and
new theories are ploted by + and Δ. Values from the close new theories are plotted by + and Δ. Values from the close
couppling method dare given by \circ and two measured results are Cincman

B. Infrared P and R lines of $\mathrm{C}_{2} \mathrm{H}_{2}$ broadened by N_{2}
B. Infrared P and R lines of $\mathbf{C}_{2} \mathbf{H}_{2}$ broadened by \mathbf{N}_{2} For infrared lines where initial and final rotational quantum numbers are not identical, to calculate off-diagonal
elements of is $-S_{2}$ requires more resonance functions than Raman Q lines. However, by introducing symmetric two dimensional Fourier and Hilbert transforms, we have developed a tool to solve this difficulty. By applying this method to the $\mathrm{C}_{2} \mathrm{H}_{2}-\mathrm{N}_{2}$ system, we have successfully calculated the W matrices based on a new updated potential model. Similar to the $N_{2}-N_{2}$ system, the tensor rank L_{1} of the potential must be even, lines with even j values don't mixed with lines with odd j. In Matrix 1 , we present a calculated W matrix in the line space constricted by $R(0), P(2), R(2), \ldots, R(40)$, and $P(42)$. The diagonal elements of this matrix are calculated half-widths. In comparison with the RB results, the new values are significantly reduced and closer to measured data

${ }^{2}$		4.48	${ }_{4}^{4.53}$	3.53	${ }_{-13.9}^{2.88}$	2.6	2.97	${ }_{2.13}$	${ }_{-3.99}^{1.7}$	年	-2.88	1.46	0.01		
	${ }_{-3}^{2.9}$	${ }_{\text {2,71 }}^{-1.61}$	ci3.	109.92	2.98 10560 1	${ }_{\text {- }}^{\text {- } 1.01}$	2.1304	${ }_{2.19}^{-6.47}$	${ }_{-6.76}^{2.00}$	${ }_{1}^{-4.36}$	${ }_{-4.61}^{1.69}$	${ }_{1}^{-3.17}$		000	-0.00
边	1.25	-4.90		${ }_{-131}$										0.00	
		${ }_{-1.0}^{2}$	-5	${ }_{-5.38}^{2.38}$	${ }_{2}^{1210}$	-12	2.0	- ${ }_{97.10}^{2.10}$	-	${ }_{\text {- }}^{1.888}$	${ }_{\text {-1.76 }}$		-0.01	0.00	${ }_{-0.0}^{0.00}$
		1.60	-3.9		-				${ }^{96,6}$						
	1.09	${ }^{-2.17}$	${ }^{1.5}$	-3.5	${ }_{-1,58}$	-5	${ }_{-1.81}^{1}$				1.6			${ }^{0.00}$	-0.01
${ }_{\text {ค12) }}$	0.87	-1.56	1.32	${ }_{-2.64}^{1-.65}$	1.50	${ }_{-3.93}^{1.69}$	${ }_{1} .58$	-6.03	1.59	${ }_{-13.31}^{1.106}$	${ }^{1.54}$				
	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline-0.00 \end{array}$	$\begin{aligned} & -0.00 \\ & 0.00 \end{aligned}$	$\begin{gathered} 0.00 \\ -0.00 \end{gathered}$	$\begin{gathered} -0.00 \\ 0.00 \\ 0.00 \end{gathered}$	-0.00	$\begin{aligned} & -0.00 \\ & 0.00 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{gathered} -0.01 \\ 0.00 \end{gathered}$		$\begin{gathered} -0.0 \\ 0.00 \end{gathered}$	$\begin{aligned} & 0.001 \\ & -0.001 \\ & 0.00 \end{aligned}$				

C. Parallel and perpendicular Bands of CO_{2} broadened by \mathbf{N}_{2}

For the CO_{2} molecule whose rotational constant is small (i.e., $0.4 \mathrm{~cm}^{-1}$), one must consider the line mixing and sizes of the W matrices would be pretty large. For the $\Sigma \rightarrow \Sigma$ and the $\Sigma \rightarrow \Pi$ bands, we have calculated a 122

Applications for symmetric-top molecules
We have considered the v_{1} band of NH_{3} and calculated the W matrices in NH_{3} bath based on a potential model consisting of the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The v_{1} transitions
occur between two NH_{3} states that have the same k, but different vibrational inversion symmetries. Because the potential does not cause line coupling between two lines with different k values, the relaxation matrix is divided by sub-matrices associated with different k values. In the present study, we have considered 217 lines whose initia angular quantum number j jare less than 9 . With this cut-off, there are 9 sub-matrices associated with $\mathrm{k}=0,1$, . 8 and their corresponding dimensions are $17,46,40,34,28,22,16,10$, and 4 .

In comparison with the RB formalism, half-widths obtained from the new formalism are significantly reduced and become closer to measured data. In Table 1, we present calculated half-widths together with measured data by Pine et al. (JQRST 50,337 (1093)) for some lines with $k=3$. The agreement between the new values and the data is very good. We also present the calculated complex From these W matrices n con obtain all information about the line mixing. For example, one can conclude that the doublets are strongly mixed.

Table 1. Self-broadened half-widths $\left(10^{-3} \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}\right)$ of NH_{3} lines in the v_{1} band

Lines	333 $\leftarrow 335$	335 ¢ 33 a	433 ¢ $¢ 35$	435 ¢ 33 sa		435 ¢ 438	533 $\leftarrow 535$	[53 \& 533	63a 46	635 \leftarrow
Exp.	656.18	644.83	630.95	627.51	543.61	539.76	483.12	476.02	422.73	448.77
New	660.48	660.07	616.06	616.00	562.61	561.87	498.64	498.45	445.38	445.45
RB	747.90	747.58	687.96	687.89	621.70	621.10	541.38	541.22	479.06	479.06

ceem	660.6						10.					${ }^{10}{ }^{5}$		-	k	
cemedem	-358.4	${ }^{600}$	${ }_{6319}^{0.0}$	${ }^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }^{-14.5}$	${ }_{\text {-10.9 }}$	${ }_{-44}^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	-1.8	-1.8	${ }^{0.0}$	${ }^{0.0}$
,	-	0	${ }_{-3321}^{631}$	-332.18	0.0	${ }_{0}^{0.0}$	0.0	${ }_{0}^{0.0}$	${ }_{-4}^{-4.4}$	${ }_{-4.4}^{-5.4}$	0.0	0.0	0.0	${ }_{0}^{10}$	-0.4	-0.4
	0.0	0.0	0.0	0.0	${ }^{630.8}$	-336.2	.	0.0	0.0	0.0	${ }^{-3.4}$	-3.3	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0		630.6	0.0		0.0							0.0
	-13.2	- ${ }_{-10.5}^{\text {-10. }}$	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{-3119}^{594.6}$		0	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{-12.7}^{-120}$	${ }_{-120}^{-153}$	0.0 0.0	0.00
\%	0.0	0.0	-4.	-4.2	0.0	0.0	0.0	0.0	569.	-299,6	0.0	0.0	0.0	0.0	${ }_{-4}$	-5.2
	0.0	0.0	-5.2	-4.4	-0.0	${ }_{0}^{0.0}$	0	0.0	-289.6	5998	0.0	${ }^{0.0}$	0.0	0.0	-41	${ }^{-4.3}$
	-	0.0	${ }_{0}^{0}$	O.	-3.34	${ }_{-3,4}^{-3.9}$	0.0	0.0	0	0.0	(106,	-2960	0.0		00	0.00
	-1.8	-1.8	0.0	0.0	${ }_{0} 0$	0.0	-120	${ }_{-167}$	0.0	0.0	${ }_{0}^{29.0}$	0.0	5360	${ }_{-2767}^{027}$	0.0	0.0
	-1.7	-1.8	0.0	0.0	0.0	0.0	-15.3	-12.0	0.0	0.0	0.0	0.0	27	36.2	0.0	0.0
S880	0.0	${ }_{0}^{0.0}$	-0.4	${ }_{-0.4}^{-0.4}$	0.0	${ }_{0}^{0.0}$	0.0	0.0	${ }_{-5.2}^{-4}$	${ }_{-4,3}$	0.0		${ }^{0.0}$	0.0	${ }_{-255,3}^{5151}$	

			0.0 2.09 208	${ }_{1}^{0.67}$	${ }_{0}^{0.0}$	0.0 0.0 0.0	$\begin{gathered} -0.04 \\ -0.06 \\ 00 \end{gathered}$	$\begin{aligned} & -0.03 \\ & -0.05 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.07 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$			-0.01		5
		${ }_{0}^{0.0}$	${ }^{1.67}$	-18.74	${ }^{0.0}$	${ }^{0.0}$	0	0.0	${ }_{0}^{0.27}$	${ }_{0}^{0.28}$	${ }^{0.0}$	0.0	${ }^{0.0}$	${ }^{0.0}$		
	0.0 0.0	0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{-2.11}^{18.14}$	${ }_{-2.11}^{-2.10}$	0.0 0.0	${ }_{0}^{0.0}$	0.0 0.0 0	0.0 0.0	${ }_{-0.25}^{-0.25}$	0.23	${ }^{0.0}$	0.0		
		${ }^{0.06}$	0.0		0.0	0.0	1770	-0.13	0.0	0.0	0.0	.	${ }^{-0.03}$			
	-	-0.05	0.2	${ }_{0}^{0.027}$	${ }^{0.0}$	${ }_{0}^{0.0}$	0.0	-0.0	1.93	${ }_{2}^{2.46}$	${ }^{0.0}$	-	${ }_{0}^{-0.0}$	lio		
	0.0 0.0	0	${ }_{0}^{0.29}$	${ }_{0}^{0.28} 0$	${ }_{-0.05}^{0.0}$	-0.25	0.0	${ }_{0}^{0.0}$	${ }_{0}^{24.0}$	0.0	${ }_{12.66}^{0.0}$	${ }_{-251}^{0.0}$	0.0	${ }_{0}^{0.0}$		
	-0.01	-0.01	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{-0.23}$	-0.0	${ }_{-0.03}^{0.0}$	${ }_{-0.03}^{0.0}$	0.0.	-0	-251		di.	${ }^{0.0}$	${ }^{\text {i. }} 0$	0.0 0.0
		0.0	-0.06	-0.06	0.0	0.0	0	0			-0.0	-0.0			18,81	

Applications for asymmetric-top molecules The new formalism is also applicable for asymmetric-top molecules. Many papers have been devoted to the line mixing for molecules important in atmospheric appications. But, few of them explicitiy car states are pretty large, one expects that effects from the line mixing are negligible. This conclusion was supported by a paper by K. S. Lam in 1977. He calculated the line mixing for 11 lines in the microwave region and found that he line mixing is weak. Win the new method, we have verified his calculations and confirmed his works, regarding either the mixing selection rules or the weakness of the off-diagonal elements mixing some of these lines. However, among all 11 lines considered by
him, none of them are in favor of the line mixing. As a result, the group considered by him is not a candidate to have significant effects. His conclusions are correct, but the applicability is limited. One should not apply it everywhere without exception. In fact, we have found that there are dozens strongly coupled lines. For example, for a pair of $15_{69} \leftarrow 15_{510}$ and $15_{510} \leftarrow 15_{411}$, in comparison with results obtained from the RB formalism, calculated half-widths could be reduced by 5% and meanwhile, variations of calculated shifts could be as large as 25%. In summary, one can conclud hat for most of the $\mathrm{H}_{2} \mathrm{O}$ lines, it is unnecessary to consider the line mixing. But, there could be exceptions in vibrational bands. Conclusions
With the new formalism and accurate potential models, we have studied the line mixing for linear symmetric-top, and asymmetric-top molecules perturbed by molecules. So far, for such comple ECS and IOS models. In comparison with the latter, the present formalism does not neglect the internal degrees of freedom of the perturbing molecules and enables one to obtain the whol relaxation matrix starting from the potential energy surface. Thus, the calculated results are more physics sound. Thus, the present work opens a door to provide information of the line mixing for molecules important in remote sensing applications.
All these W matrices are available to readers by their requesting
. Bouiet, Q. Ma, and R. R. Tipping. Line mixing in paralel and perpendicular bands of CO_{2} : A further test of the refined Robert-Bonamy
Q. Ma, C. Builet, and RR. H. Tipping, Effects on Calcuated Hall-widths and Shits from the Line Corle
Q. Ma C C.B.bulet, and R. . . TTpping, Two Dimensional Symmetic Correlations of the S Operator and Two Dimensional Fouier Transorms Considering the Line Coupling for Pand R Lines of of Linear Molecules, J. Chem. Phys. 140 , 103304 (2014). . Boutet, Q. Ma, and F. Thibuutt Line Interference Effecti Using Refined Robert-Bonamy Formalism: The Test Case of the Lsotropic Rama

