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Introduction

The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for

atmospheric monitoring. From a theoretical point of view, all relevant information of the line mixing is

contained in the relaxation matrix whose diagonal elements give half-widths and shifts, and off-

diagonal elements correspond to line interferences. For simple systems, accurate fully quantum

calculations are feasible. However, fully quantum calculations become unrealistic for more complex
systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely
used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix

elements. As a result, in order to understand the line mixing, semi-empirical fitting or scaling laws such
as the ECS and IOS models are commonly used. Recently, we have found that in developing the RB
formalism, without justification these authors had applied the isolated line approximation in evaluating
the scattering operator given in exponential form. Furthermore, it is this assumption that blocks the
possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and
accurately evaluating matrix elements of the exponential operators, we have developed a more

capable formalism. With this new formalism, we are now able not only to reduce uncertainties for

calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the
whole relaxation matrix.

New Formalism

A. A derivation error in developing the RB formalism
The error occurs in a process to apply the cumulant expansion for the operator of exp(iS, — S,) in
developing the RB formalism. Because Robert and Bonamy adopted a wrong definition of the
average of the cumulant expansion, their expression for the operator of iS, — S, is not correct. The
difference between their expression and the correct one is
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It turns out that this subtle difference results in profound consequences. Within the RB formalism, iS, -
S, depends on states of the bath molecule and its matrix dimension equals to (# of lines) times (# of
bath states). In contrast, within the new formalism, this operator is independent of the bath states and
its matrix dimension equals to # of lines.
As a result, within the RB formalism, one has to diagonalize a huge size matrix for each of collisional
trajectories. On the other hand, one only needs to diagonalize a much smaller size matrix for each
of trajectories. As an example, the computational burdens for the N, - N, system could differ by 68,900
times. Mainly due to this difficulty, Robert and Bonamy had to apply the isolated line approximation to
evaluate exp(iS; — S, ). Unfortunately, it is this simplifying assumption that blocks the ability of their
formalism to calculate off-diagonal elements of the relaxation matrix W at all. This is the intrinsic
reason why the RB formalism fails in studying the line mixing.

B. The isolated line approximation adopted by Robert and Bonamy
Based on the isolated line approximation, Robert and Bonamy assumed that
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and only calculated the diagonal elements of W from the expression of
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Unfortunately, this assumption is not valid in many cases and due to this unjustified assumption,
calculated half-widths and shifts contain errors. Furthermore, because only diagonal elements of W
are available, they had to assumed that matrix elements of the resolvent operator is given by
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Thus, they can't consider the line mixing at all.
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C. The new formalism capable to consider the line mixing

Within the new formalism, because the size of iS, — S, is small, one can diagonalize this matrix and
accurately evaluate all matrix elements of << i’ f'| e7*1752 |if >>. Then, the whole matrix elements

of W can be calculated from the expression of
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The method is applicable for all trajec'cntlcl)nry models and for complicated accurate potentials. After the W
matrix is available, one can easily obtain the Rosenkranz line mixing parameters with
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where d, are reduced dipole matrix elements and «, are line frequencies.
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Applications for linear molecules

A. Raman Q lines of N, lines broadened by N,
We have considered Raman Q lines of N, in N, bath. For the Raman Q transitions, lines can be
simply labeled by a number of Q(j) (i.e., ] =} = J;). Due to the symmetry, the line mixing occurs only
among lines with the same evenness or the oddness of Q(j). As a result, the whole W matrix is
divided into two sub-matrices constructed by even Q(j) and odd Q(j), respectively. Based on an
accurate potential model, we have calculated these matrices.
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30 % 0 } { 1 diagonal elements. we present comparisons between
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obtained from CC method for some selected elements
of W(j’, j) (in units of 103 cm! atm1) with j = 4, 6,
and 8 in Fig. 2. As shown in the figure, the
agreements are very good.
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Fig. 1 Calculated half-widths of Raman Q lines from the RB and
new theories are plotted by + and A. Values from the close
coupling method are given by © and two measured results are
plotted by o and x.
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Fig. 2 (a)-(c). Comparison of our renormalized results and the CC values for some selected off-diagonal elements

B. Infrared P and R lines of C,H, broadened by N,

For infrared lines where initial and final rotational quantum numbers are not identical, to calculate off-diagonal
elements of iS; — S, requires more resonance functions than Raman Q lines. However, by introducing symmetric
two dimensional Fourier and Hilbert transforms, we have developed a tool to solve this difficulty. By applying this
method to the C,H, — N, system, we have successfully calculated the W matrices based on a new updated
potential model. Similar to the N, — N, system, the tensor rank L, of the potential must be even, lines with even |
values don’'t mixed with lines with odd |. In Matrix 1, we present a calculated W matrix in the line space constricted
by R(0), P(2), R(2), ..., R(40), and P(42). The diagonal elements of this matrix are calculated half-widths. In
comparison with the RB results, the new values are significantly reduced and closer to measured data.

Matrix 1. A 42 x 42 sub-matrix of relaxation operator (103 cm! atm) in the P and R line space

EEETU 12206 727 -1025 298 -3.74 2,07 —-245 158 —-179 123 —-134  0.99 0.00 —0.00 0.00 1
b2 ) 7.22 11590 453 -1293 288 -512 221 -339 175 —245 142 —-184 - —0.01 0.00 —0.00
B ro —-10.08 448 11236 353 —-1394 265 —-597 213 —-399 174 -288 146 - 0.01 —0.01 0.00
L2 290 —12.61 3.48 109.02 298 —14.05 240 —-647 200 —-436 169 —-3.17 - —=0.01 0.00 —0.00
s ~-356 277 —1345 294 10560 261 —1394 219 -6.76 188 —-461 163 - 001 —0.01 0.00
e G 195 —480 254 —1336 257 10242 232 —1393 202 -697 178 —480 - —0.02 0.00 —0.01
R(6) —2.25 207 -549 231 —-13.00 229 9980 210 —-1419 188 -7.17 168 - 0.01 —0.01 0.00
3 ) 144  =3.04 199 —-582 210 —12.69 2.07  97.90 193 —-14.72 176 —=7.43 - —0.02 0.00 —0.01
B re) ~158 160 —-3.49 187 -593 194 —-1261 191 96.60 1.80 —15.33  1.65 0.01 —0.02 0.00
Y ruo) .09 -211 159 -373 176 —-596 181 —12.76 177  95.79 1.68 —1596 - —0.03 0.00 —0.01
I roo) -116 127 —-243 156 -386 167 —-598 170 —-13.01 1.66 9526 1.56 0.01 —0.02 0.00
P(12) 087 —-156 132 -264 150 -393 158 —-6.03 159 —-1331 154 9483 - —0.04 0.00 —0.02
P(40) 0.00 -0.00 000 —-0.00 0.00 -0.01 000 —-0.01 000 —0.01 0.00 —-0.02 - 4594 0.05 -12.26
R(40) -0.00 000 -0.00 0.00 -0.00 000 —0.00 000 -0.01 0.00 -0.01 0.00 0.05 4697 0.04
16 [CITP) L 0.00 -0.00 000 —0.00 000 —0.00 0.00 -0.00 000 —0.00 000 —0.01 - —8.09 0.03 4476

C. Parallel and perpendicular Bands of CO, broadened by N,

For the CO, molecule whose rotational constant is small (i.e., 0.4 cm™"), one must consider the line mixing and
sizes of the W matrices would be pretty large. For the X—X and the X—I1 bands, we have calculated a 122 x
122 and a 183 x 183 of matrices of W, respectively. Some results are presented in Figs. 3 and 4.
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Fig. 3. Comparison between ECS and our results of off-diagonal  Fig. 4. Comparison of the ECS line mixing coefficients and the
elements of W coupling R(16) to other R(J') lines. present results with measured data in 2 — 2 band.

Applications for symmetric-top molecules

We have considered the v, band of NH, and calculated the W matrices in NH, bath based on a potential model
consisting of the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The v, transitions

occur between two NH, states that have the same k, but different vibrational inversion symmetries. Because the
potential does not cause line coupling between two lines with different k values, the relaxation matrix is divided by
sub-matrices associated with different k values. In the present study, we have considered 217 lines whose initial
angular quantum number j, are less than 9. With this cut-off, there are 9 sub-matrices associated with k =0, 1, ...,
8 and their corresponding dimensions are 17, 46, 40, 34, 28, 22, 16, 10, and 4.

Goddard Insttute for
Space Studies

In comparison with the RB formalism, half-widths obtained from the new formalism are significantly
reduced and become closer to measured data. In Table 1, we present calculated half-widths together
with measured data by Pine et al. (JQRST 50, 337 (1093)) for some lines with k = 3. The agreement
between the new values and the data is very good. We also present the calculated complex
relaxation sub-matrix with k = 6 whose real and imaginary parts are given in Matrix 2 and Matrix 3.
From these W matrices, one can obtain all information about the line mixing. For example, one can
conclude that the doublets are strongly mixed.

Table 1. Self-broadened half-widths (103 cm™ atm™)of NH, lines in the v, band
| Exp.

332 ¢ 335 (33s€¢33a(43a €& 335|435 € 33a(43a €435 | 43s €& 43a | 53a €& 53s [ 535 & 53a | 63a €& 63s | 63s & 63a

656.18  644.83  630.95 627.51 543.61 539.76  483.12 476.02 42273  448.77
PET 66048  660.07 616.06 616.00 562.61  561.87 498.64  498.45 44538  445.45
DR 74700 74758 687.96  687.89 62170  621.10 54138  541.22  479.06  479.06

Matrix 2. A real part of 16 x 16 sub-matrix of relaxation operator (103 cm atm™) with k=6

6606 -3584 00 00 00 00 -109 -132 00 00 00 00 -18 -17 00 00 -
BN sescoea [-3584 6603 00 00 00 00 145 -109 00 00 00 00 -18 ~-18 00 00
Bl eocees | 00 00 6319 -3321 00 00 00 00 44 52 00 00 00 00 04 —04
K eceea | 00 00 -3321 6318 00 00 00 00 —42 44 00 00 00 00 04 —04
Elccocrss | 00 00 00 00 6308 -3362 00 00 00 00 -34 -33 00 00 00 00
Elescms | 00 00 00 00 -332 6306 00 00 00 00 -39 34 00 00 00 00
S e | -109 -145 00 00 00 00 5946 -3119 00 00 00 00 -120 -153 00 00
B e [-132 -109 00 00 00 00 -3119 596 00 00 00 00 -167 -120 00 00
B | 00 00 44 —42 00 00 00 00 5696 -2896 00 00 00 00 42 52
s | 00 00 -52 44 00 00 00 00 -2896 5698 00 00 00 00 —41 —43
MW oeacses | 00 00 00 00 -34 -39 00 00 00 00 5677 -2960 00 00 00 00
B ssco | 00 00 00 00 -33 -34 00 00 00 00 2960 5677 00 00 00 00
B sacsss | 18 -18 00 00 00 00 120 -167 00 00 00 00 5360 -2767 00 00
Mo | -17 -18 00 00 00 00 -153 -120 00 00 00 00 -2767 5362 00 00
T ooacses | 00 00 —04 04 00 00 00 00 -42 41 00 00 00 00 5151 =-2553
P osscee L 00 00 -04 04 00 00 00 00 -52 -43 00 00 00 00 -2553 51521

Matrix 3. An imaginary part of 16 x 16 sub-matrix of relaxation operator (103 cm atm™) with k=6

s 2323 —-034 0.0 0.0 0.0 0.0 -0.04 -0.03 0.0 0.0 0.0 0.0 —-0.01 -0.01 0.0 0.0 1
BN ses<e6a |—0.34 —2370 0.0 0.0 0.0 0.0 -0.06 -0.05 0.0 0.0 0.0 0.0 -0.01 -0.01 0.0 0.0
BEN 76a < 665 0.0 0.0 2298 1.67 0.0 0.0 0.0 0.0 0.27 0.29 0.0 0.0 0.0 0.0 0.05 0.06
BN 76s < 662 0.0 0.0 1.67 -18.74 0.0 0.0 0.0 0.0 0.27 0.28 0.0 0.0 0.0 0.0 0.05 0.06
BN 662 < 765 0.0 0.0 0.0 0.0 18.14 -2.11 0.0 0.0 0.0 0.0 -0.25 -0.23 0.0 0.0 0.0 0.0
M 665 < 760 0.0 0.0 0.0 0.0 —-2.11 -23.10 0.0 0.0 0.0 0.0 -0.25 -0.23 0.0 0.0 0.0 0.0

4 76a<c76s  1-0.04 -0.06 0.0 0.0 0.0 0.0 17.70  -0.13 0.0 0.0 0.0 0.0 -0.03 0.0 0.0 0.0
Kl 7esc76a (003 —0.05 0.0 0.0 0.0 0.0 -0.13 -18.01 0.0 0.0 0.0 0.0 -0.03 0.0 0.0 0.0
KN 862 < 765 0.0 0.0 0.27 0.27 0.0 0.0 0.0 0.0 19.83 246 0.0 0.0 0.0 0.0 0.29 0.32
BN 865 < 762 0.0 0.0 0.29 0.28 0.0 0.0 0.0 0.0 246 —13.77 0.0 0.0 0.0 0.0 0.29 0.32
) 762 < 865 0.0 0.0 0.0 0.0 -0.25 -0.25 0.0 0.0 0.0 0.0 1266 —2.51 0.0 0.0 0.0 0.0
B 765 < 862 0.0 0.0 0.0 0.0 -0.23 -0.23 0.0 0.0 0.0 0.0 —2.51 -19.05 0.0 0.0 0.0 0.0
Bl seacsss (001 —0.01 0.0 0.0 0.0 0.0 -0.03 -0.03 0.0 0.0 0.0 0.0 14.69 0.05 0.0 0.0
Bl ssscsea (001 —001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 005 1476 0.0 0.0
EE] 962 <« 865 0.0 0.0 0.05 0.05 0.0 0.0 0.0 0.0 0.29 0.29 0.0 0.0 0.0 0.0 1881 2.36
Elosscsa | 0 0.0 0.06  0.06 0.0 0.0 0.0 0.0 0.32 0.32 0.0 0.0 0.0 0.0 236 —12.71

Applications for asymmetric-top molecules

The new formalism is also applicable for asymmetric-top molecules. Many papers have been devoted
to the line mixing for molecules important in atmospheric applications. But, few of them explicitly carry
out numerical calculations for the H,O lines. In general, because energy gaps between different H,O
states are pretty large, one expects that effects from the line mixing are negligible. This conclusion
was supported by a paper by K. S. Lam in 1977. He calculated the line mixing for 11 lines in the
microwave region and found that the line mixing is weak. With the new method, we have verified his
calculations and confirmed his works, regarding either the mixing selection rules or the weakness of
the off-diagonal elements mixing some of these lines. However, among all 11 lines considered by
him, none of them are in favor of the line mixing. As a result, the group considered by him is not a
candidate to have significant effects. His conclusions are correct, but the applicability is limited. One
should not apply it everywhere without exception. In fact, we have found that there are dozens of
strongly coupled lines. For example, for a pair of 1554 <—155,, and 155,, <154, IN comparison with
results obtained from the RB formalism, calculated half-widths could be reduced by 5 % and
meanwhile, variations of calculated shifts could be as large as 25 %. In summary, one can conclude
that for most of the H,O lines, it is unnecessary to consider the line mixing. But, there could be
exceptions in vibrational bands.

With the new formalism and accurate potential models, we have studied the line mixing for linear ,
symmetric-top, and asymmetric-top molecules perturbed by molecules. So far, for such complex
systems, there are no “first principle” calculations existing and one has to rely on the semi-empirical
ECS and I0S models. In comparison with the latter, the present formalism does not neglect the
internal degrees of freedom of the perturbing molecules and enables one to obtain the whole
relaxation matrix starting from the potential energy surface. Thus, the calculated results are more
physics sound. Thus, the present work opens a door to provide information of the line mixing for
molecules important in remote sensing applications.

All these W matrices are available to readers by their requesting
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