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Motivation
• NASA uses computer models to predict how 

liquids move inside rocket propellant tanks to 

improve safety and efficiency

• Limited zero-g liquid data

• How good (or bad) are computer models at 

predicting fluid motion?

• Experiment images clear tank, partially filled 

with colored water, as it moves within ISS

• Images compared to predictions made by 

computer models to increase confidence in 

results
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CFD ModelExperiment

“The Boeing Delta IV Launch Vehicle – Pulse-Settling 
Approach for Second-Stage Hydrogen Propellant 

Management”, Acta Astronautica Volume 61, June-
August 2007



SPHERES-Slosh Experiment
• Utilizes existing SPHERES satellites to propel transparent liquid-filled 

tank

• Acquires system and liquid position data for known applied forces using 

IMU and imaging systems
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SPHERES-Slosh Experiment
Two previous papers discuss the fluid dynamics and scaling aspects of the 

design of Slosh:

• Detailed discussion of scaling methodology employed to downsize from 

full-size space vehicle maneuver to a maneuver executed in small scale in 

a controlled environment by the SSE

• Non-dimensional metrics are used to scale geometric characteristics and 

fluid properties

• Update with further design details

• Non-fluid mechanics related design items
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ISS Science Development

Session Tank Date

Checkout 40% Jan 22, 2014

Science 1 40% Feb 28, 2014

Science 2 20% Jun 18, 2014

Science 3 20% Sep 09, 2014

Science 4 40% Jul 17, 2015

Science 5 40% Aug 07, 2015

Science 6 40% Sep 10, 2015

Science 7 TBD TBD

Science 8 TBD TBD
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9 sessions being executed onboard ISS

• Checkout

• Science 1 and 2

‒ Initial condition improvement

‒ Open/closed lightbox

• Science 3 and 4: satellite deployment

• Science 5 and 6:

‒ Industry-requested maneuvers

‒ Booster burnback (SpaceX)

‒ Viscous/Inertia boundary

• Science 7 and 8:

‒ Receiving input from industry partners



Inertia Estimation

• Command experiment to rotate about each of the main axes

• Measure rotation rates achieved

• 𝜏 input torque

• 𝛼 measured angular acceleration

• 𝐼 moment of inertia about the axis of rotation

• In practice is fairly complex
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 𝜏 = 𝐼 𝛼 

Moment of 

Inertia
Minimum Maximum Average

CAD 

Calculated

Ixx 0.145 0.410 0.2775 0.3151

Iyy 1.186 3.360 2.273 2.5471

Izz 1.096 3.104 2.100 2.4326



• Overly complex initial conditions 

cannot be accurately reproduced 

in CFD
– Fluid not uniformly distributed

– Large number of bubbles scattered 

throughout domain

• Three maneuvers were developed
– First accelerating the system along the 

principal (long) axis and quickly bringing it 

to a stop: Not too effective

– Second involved spinning the experiment 

about one of the SPHERES: Effective but 

requires large space

– Third method preferred and most effective: 

spinning system about center axis

Initial Conditions Evolution
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Checkout Session, 40% tank

Science 1, 40% tank

Science 2, 40% tank



Checkout and Science 1

Lessons Learned

Post processing data revealed that:

• Acceleration levels achieved by thrusters on SPHERES 

are too low to create significant, dominating fluid motion

• Crew members were capable of pushing the system in 

a way that created reasonable fluid motion in the tank

• Higher acceleration levels achieved by manually 

moving the experiment created higher quality data in 

dynamic scenarios
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On-Orbit Results Modeling

• Science 3 included maneuver to replicate particular satellite 

deployment problem 

• Spring-loaded deployment system induces a thrust pulse in the 

longitudinal direction of the tank

• Slosh wave traveling along tank

• Recreated by having crewmember push experiment in same 

manner, with 20% tank settled in both hemispheres

• Recorded acceleration curve applied as mesh motion boundary 

condition to CFD model created in STAR-CCM+
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On-Orbit Results Modeling

• Initial condition: Near minimum-energy 

state after settling, with experiment free 

floating. 

• Experiment pulled by crewmember, 

creating fluid shift converging in 

forward hemisphere, initiating blob

• Thrust pulse inverted and fluid shifts to 

opposite side of tank

• Convergent inner geometry of tank 

combines with momentum carried by 

fluid

• Central geyser replicated by CFD

• Reducing acceleration shrinks geyser

• CFD model does not capture this effect
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On-Orbit Results Modeling

• Droplet detaches from rest of domain 

• Difference in positions:

– integration error 

– noise of accelerometer readings producing 

velocity shift (different distance travelled by 

the fluid) 

• Droplet impacts opposite side of tank 

• No meniscus visible, suggesting thin film 

always coating inner surface of tank 

(simulated perfectly)
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• CFD model predictions display similar behavior with less pronounced 

blob generation. Potential causes:

– Mesh resolution

– Misalignment in measured acceleration

– Slight difference in fill level (CFD vs real)

– Surface tension modeling



Longitudinal Spin Demonstration
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Conclusions and Summary
• Snapshot of current science status 

• Show results extracted from the operation of SPHERES-Slosh 

Experiment on board the ISS

• Summary of evolution of initial conditions through Science sessions 1, 

2 and 3

• Determination of inertia parameters from actual flight data, matching to 

CAD parameters with high uncertainty due to data noise and conditions 

variability

• CFD simulations using inertial data from Science session 3 as input 

compared to actual ISS data

• Decent agreement overall, replicating satellite deployment scenario

• SPHERES-Slosh Experiment opens door to slosh research on 

microgravity

• Improvement possibilities include study of liquid acquisition devices, 

propellant transfer and spacecraft refueling

• Use actual propellants instead of surrogate fluids
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