

Results Of Microgravity Fluid Dynamics Captured With The SPHERES-Slosh Experiment

International Astronautical Congress

Dr. Hector Gutierrez

Oct 12-16, 2015

Dr. Jeffrey Moder

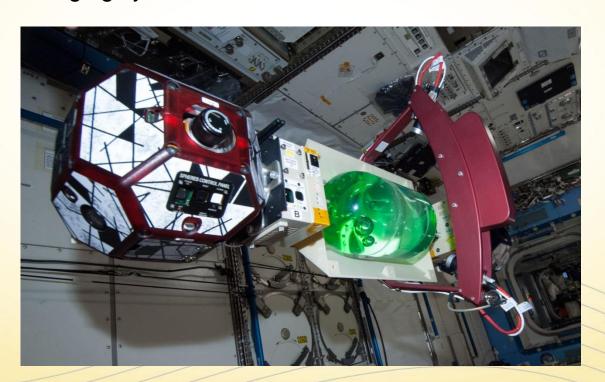
Overview

- Motivation
- SPHERES-Slosh Experiment
- ISS Science Development
- Inertia Determination
- Initial Conditions Evolution
- Checkout and Science 1 Lessons Learned
- On-Orbit Results Modeling
- Longitudinal Spin Demonstration
- Conclusions/Summary

Motivation

- NASA uses computer models to predict how liquids move inside rocket propellant tanks to improve safety and efficiency
- Limited zero-g liquid data
- How good (or bad) are computer models at predicting fluid motion?
- Experiment images clear tank, partially filled with colored water, as it moves within ISS
- Images compared to predictions made by computer models to increase confidence in results

"The Boeing Delta IV Launch Vehicle – Pulse-Settling Approach for Second-Stage Hydrogen Propellant Management", Acta Astronautica Volume 61, June-August 2007



SPHERES-Slosh Experiment

- Utilizes existing SPHERES satellites to propel transparent liquid-filled tank
- Acquires system and liquid position data for known applied forces using IMU and imaging systems

SPHERES-Slosh Experiment

Two previous papers discuss the fluid dynamics and scaling aspects of the design of Slosh:

¹Chintalapati, S., Holicker, C, Schulman, R., Contreras, E., Gutierrez, H, and Kirk, D., "Design of an Experimental Platform for Acquisition of Liquid Slosh Data aboard the International Space Station", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2012-4297, 30 July - 01 August 2012, Atlanta, GA

- Detailed discussion of scaling methodology employed to downsize from full-size space vehicle maneuver to a maneuver executed in small scale in a controlled environment by the SSE
- Non-dimensional metrics are used to scale geometric characteristics and fluid properties

²Chintalapati, S., Holicker, C, Schulman, Wise, B., Lapilli, G., Gutierrez, H, and Kirk, D. "Update on SPHERES Slosh for Acquisition of Liquid Slosh Data aboard the ISS", 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2013-3903, July 14 - 17, 2013, San Jose, CA

Update with further design details

Lapilli, G. et. al, "Design of a liquid sloshing experiment to operate in the International Space Station", 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA 10.2514/6.2015-4074, July 27-29, Orlando, FL

Non-fluid mechanics related design items

ISS Science Development

9 sessions being executed onboard ISS

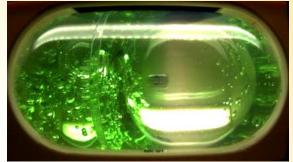
- Checkout
- Science 1 and 2
 - Initial condition improvement
 - Open/closed lightbox
- Science 3 and 4: satellite deployment
- Science 5 and 6:
 - Industry-requested maneuvers
 - Booster burnback (SpaceX)
 - Viscous/Inertia boundary
- Science 7 and 8:
 - Receiving input from industry partners

Session	Tank	Date		
Checkout	40%	Jan 22, 2014		
Science 1	40%	Feb 28, 2014		
Science 2	20%	Jun 18, 2014		
Science 3	20%	Sep 09, 2014		
Science 4	40%	Jul 17, 2015		
Science 5	40%	Aug 07, 2015		
Science 6	40%	Sep 10, 2015		
Science 7	TBD	TBD		
Science 8	TBD	TBD		

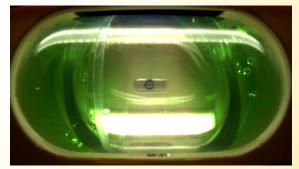
Inertia Estimation

- Command experiment to rotate about each of the main axes
- Measure rotation rates achieved

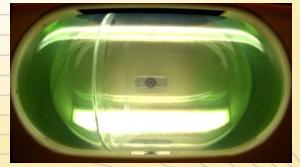
$$\tau = I \alpha$$


- τ input torque
- α measured angular acceleration
- I moment of inertia about the axis of rotation
- In practice is fairly complex

Moment of Inertia	Minimum	Maximum	Average	CAD Calculated
lxx	0.145	0.410	0.2775	0.3151
lyy Izz	1.186	3.360	2.273	2.5471
Izz	1.096	3.104	2.100	2.4326



Initial Conditions Evolution


- Overly complex initial conditions cannot be accurately reproduced in CFD
 - Fluid not uniformly distributed
 - Large number of bubbles scattered throughout domain
- Three maneuvers were developed
 - First accelerating the system along the principal (long) axis and quickly bringing it to a stop: Not too effective
 - Second involved spinning the experiment about one of the SPHERES: Effective but requires large space
 - Third method preferred and most effective: spinning system about center axis

Checkout Session, 40% tank

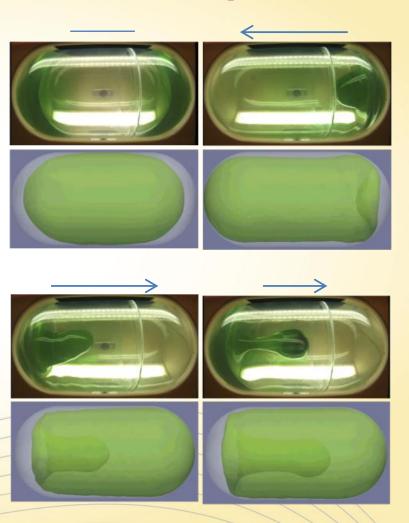
Science 1, 40% tank

Science 2, 40% tank

Checkout and Science 1 Lessons Learned

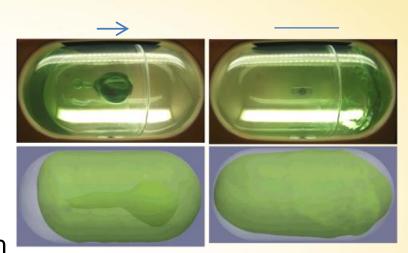
Post processing data revealed that:

- Acceleration levels achieved by thrusters on SPHERES are too low to create significant, dominating fluid motion
- Crew members were capable of pushing the system in a way that created reasonable fluid motion in the tank
- Higher acceleration levels achieved by manually moving the experiment created higher quality data in dynamic scenarios


On-Orbit Results Modeling

- Science 3 included maneuver to replicate particular satellite deployment problem
- Spring-loaded deployment system induces a thrust pulse in the longitudinal direction of the tank
- Slosh wave traveling along tank
- Recreated by having crewmember push experiment in same manner, with 20% tank settled in both hemispheres
- Recorded acceleration curve applied as mesh motion boundary condition to CFD model created in STAR-CCM+

On-Orbit Results Modeling


- Initial condition: Near minimum-energy state after settling, with experiment free floating.
- Experiment pulled by crewmember, creating fluid shift converging in forward hemisphere, initiating blob
- Thrust pulse inverted and fluid shifts to opposite side of tank
- Convergent inner geometry of tank combines with momentum carried by fluid
- Central geyser replicated by CFD
- Reducing acceleration shrinks geyser
- CFD model does not capture this effect

On-Orbit Results Modeling

- Droplet detaches from rest of domain
- Difference in positions:
 - integration error
 - noise of accelerometer readings producing velocity shift (different distance travelled by the fluid)
- Droplet impacts opposite side of tank
- No meniscus visible, suggesting thin film always coating inner surface of tank (simulated perfectly)

- CFD model predictions display similar behavior with less pronounced blob generation. Potential causes:
 - Mesh resolution
 - Misalignment in measured acceleration
 - Slight difference in fill level (CFD vs real)
 - Surface tension modeling

Longitudinal Spin Demonstration

Courtesy of NASA TV

Conclusions and Summary

- Snapshot of current science status
- Show results extracted from the operation of SPHERES-Slosh Experiment on board the ISS
- Summary of evolution of initial conditions through Science sessions 1, 2 and 3
- Determination of inertia parameters from actual flight data, matching to CAD parameters with high uncertainty due to data noise and conditions variability
- CFD simulations using inertial data from Science session 3 as input compared to actual ISS data
- Decent agreement overall, replicating satellite deployment scenario
- SPHERES-Slosh Experiment opens door to slosh research on microgravity
- Improvement possibilities include study of liquid acquisition devices, propellant transfer and spacecraft refueling
- Use actual propellants instead of surrogate fluids

Acknowledgements

- Dr. Paul Schallhorn, Brandon Marsell, Jacob Roth and Scott Clarke at Kennedy Space Center Launch Services Program
- Melissa Boyer, Kathy Nordmann, Teresa Tam, Jennifer Goldsmith and many other individuals that supported all the certification and validation process
- Aric Katterhagen for his limitless support with operations;
- Entire SPHERES team at ARC led by Andres Martinez that provide constant support and collaborate with FIT in many ways to make Slosh possible
- Entire team at the MIT Space Systems Laboratory, Dr. Alvar Saenz-Otero, Dr. Dave Miller, and individuals at Aurora Flight Sciences that were key for the payload integration, especially John Merk

References

- Berglund, M D, et al. The Boeing Delta IV launch vehicle—Pulse-settling approach for second-stage hydrogen propellant management. s.l.: Acta Astronautica. pp. 416-424. 2.
- Strikwerda, T. E., et al., NEAR Shoemaker: Major anomaly survival, delayed rendezvous and mission success. Breckenridge, CO: Guidance and control 2001, 2001. pp. 597-614. 3.
- Space Exploration Technologies Corporation Update Archive. SpaceX. [Online] March 2007. http://www.spacex.com/updates_archive.php?page=0107-0707.
- SPACEX, Demo Flight 2 -Flight Review Update . s.l. : SPACEX, 2007. http://www.spacex.com/F1-DemoFlight2-Flight-Review.pdf.
- Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior. Schallhorn, Paul, et al. Denver, CO: s.n., 26-28 Jun. 2012. 1st Annual International Space Station (ISS) Research and Development Conference
- 6. Chintalapati, S., Holicker, C, Schulman, R., Contreras, E., Gutierrez, H, and Kirk, D., "Design of an Experimental Platform for Acquisition of Liquid Slosh Data aboard the International Space Station", 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2012-4297, 30 July 01 August 2012, Atlanta, GA
- Chintalapati, S., Holicker, C, Schulman, Wise, B., Lapilli, G., Gutierrez, H, and Kirk, D. "Update on SPHERES Slosh for Acquisition of Liquid Slosh Data aboard the ISS", 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2013-3903, July 14 - 17, 2013, San Jose, CA
- Lapilli, G. et. al, "Design of a liquid sloshing experiment to operate in the International Space Station", 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA 10.2514/6.2015-4074, July 27-29, Orlando, FL
- 9. Tam, W., Jaekle, Don E., "Design and manufacture of an oxidizer tank with a surface tension PMD", AIAA 2005-3734
- 10. Explorer 1, NSSDC/COSPAR ID: 1958-001A, NASA NSSDC Master Catalog. Online, accessed August 2015.
- 11. Peraire, J., Widnall, S., "3D Rigid Body Dynamics: Kinetic Energy; Instability; Equations of Motion", MIT Open CourseWare, 16.07 Dynamics, Version 2.0, 2008, licensed under CC BY 2.0

