

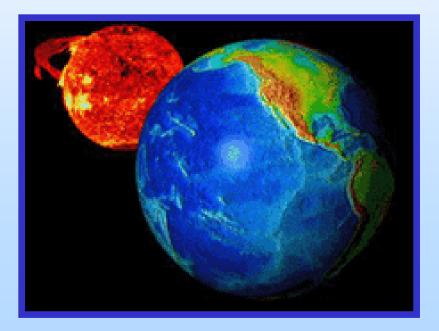
The Living With a Star Space Environment Testbed Payload

Mike Xapsos NASA Goddard Space Flight Center

January 27, 2015

To be presented by M.A. Xapsos at the Demonstration & Science Experiments Science and Concept of Operations Meeting, AFRL, Albuquerque, NM, January 27, 2015.

Acronyms



- LWS Living With a Star
- SET Space Environment Testbed
- SDO Solar Dynamics Observatory
- ESA European Space Agency
- JHU APL Johns Hopkins University Applied Physics Laboratory
- DSX Demonstration and Science Experiments
- BARREL Balloon Array for Radiation-belt Relativistic Electron Losses
- AFRL Air Force Research Laboratory
- AE9/AP9 Aerospace Electron and Proton Models, Version 9
- MEO Medium Earth Orbit
- GIOVE-A Galileo In-Orbit Validation Element A
- LET Linear Energy Transfer
- RADFET Radiation Sensing Field Effect Transistor
- PI Principal Investigator
- TIMA Techniques de l'Informatique et de la Microelectronique pour l'Architecture des systemes integres

Outline

- Living With a Star (LWS) Program
- Space Environment Testbed (SET) Payload
 - Space Weather Monitor
 - Carrier Containing 4 Board Experiments

Living With a Star Program

4

- Provides missions to improve our understanding of space weather; how the Earth and Solar System respond; and how humanity is affected.
- LWS Missions:
 - Solar Dynamics Observatory (SDO) launched Feb. 2010
 - Solar Orbiter Collaboration with ESA NASA providing 2 of 10 instruments for 2017 launch
 - Solar Probe Plus developed by JHU APL and managed at GSFC for 2018 launch; measurements within solar corona
 - Van Allen Probes launched August 2012; interest in collaborative work with DSX to extend both mission lifetimes
 - BARREL balloon measurements of relativistic electron precipitation from belts; supplements Van Allen Probes data
 - Space Environment Testbed (SET)

5

Space Environment Testbed Investigations

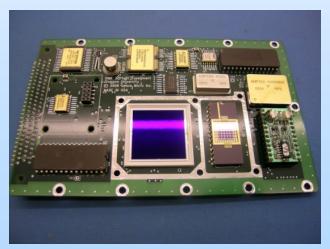
SET Payload:

NASA

6

- PI: Clive Dyer, QinetiQ
- Objectives:
 - Demonstrate the value of a compact space weather monitor for NASA spacecraft
 - 1 kg mass; 2.5 W power
 - Provide data to board experiments
 - Use proton and electron data for AE9/AP9 model development
 - Provide calibration to European MEO data taken on GIOVE-A satellite (23,260 km circular, 56^o inclination)
- Measurements
 - 2 particle telescopes consisting of Si diode pairs
 - > 40 MeV proton flux
 - Heavy ion LET spectra: 0.1 to 25 MeV-cm²/mg
 - Electrometers measuring electron charging current at 3 shielding depths
 - RADFETs measuring ionizing dose at 2 shielding depths

Credit: QinetiQ, United Kingdom http://lws-set.gsfc.nasa.gov


SET Payload: Dosimetry Intercomparison and Miniaturization Experiment (DIME)

7

- PI: Peter McNulty, Clemson
- Objectives:
 - Provide novel dosimetry data with Commercial Off the Shelf (COTS) microelectronic structures
- Measurements
 - Total dose from RADFETs, Erasable Programmable Read Only Memories (EPROMs) and Optically Stimulated Luminescence (OSL) films
 - Non-ionizing dose from Light Emitting Diode (LED) characteristics in OSL circuitry
 - LET spectra from p-type silicon/n-type silicon junction arrays



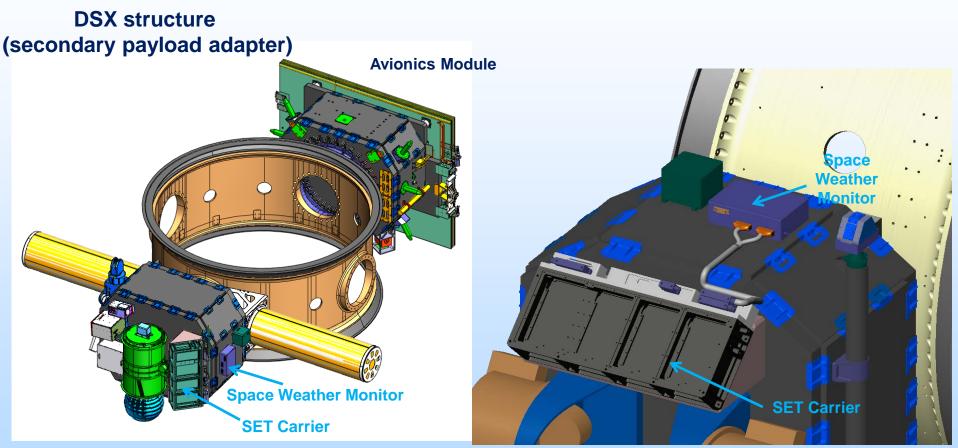
Credit: Clemson University; http://lws-set.gsfc.nasa.gov

SET Payload: Enhanced Low Dose Rate Sensitivity (ELDRS)

- PI: Hugh Barnaby, Arizona State University
- Objective:
 - Improve understanding of the physics of the ELDRS effect in order to improve/validate ground test protocol for linear bipolar technologies and reduce design margins
- Space Measurements:
 - Transistor characteristics of 24 bipolar junction transistors with well-controlled, different processing characteristics:
 - Oxide thickness
 - Passivation layer
 - Hydrogen content

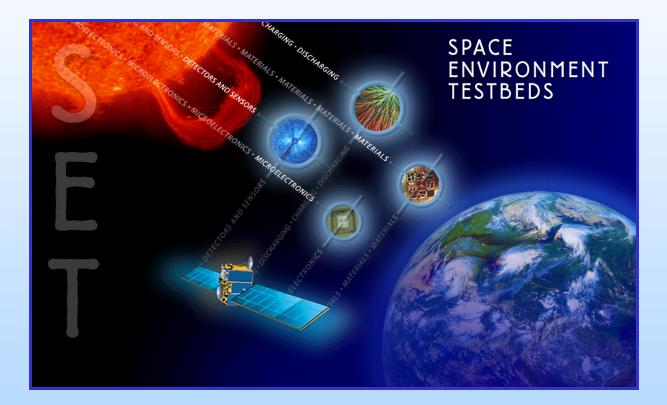
Credit: Arizona State University; http://lws-set.gsfc.nasa.gov

SET Payload: Commercial Off the Shelf–2 (COTS-2)


- PI: Raoul Velazco, TIMA, France
- Objective:
 - Validate approach to single event analysis in complex circuits with large phase space by combining measurements of static cross sections and fault injection techniques
- Space Measurements:
 - Single events in COTS Field
 Programmable Gate Arrays (FPGAs)

Credit: TIMA, France; http://lws-set.gsfc.nasa.gov

SET Payload on DSX



Payload Module

All space data will be publicly available on the SET website: http://lws-set.gsfc.nasa.gov

LWS SET Personnel

- Reggie Eason
 - Project Manager
- Ron Mink
 - Systems Engineer
- Scott Appelbaum
 - Mission Operations
- Eve Rothenberg
 - Ground Data
- Karen Pham
 - Integration & Testing