

Unsteady Pressures on a Generic Capsule Shape

Jim Ross & Nathan Burnside NASA Ames Research Center

53rd AIAA Aerospace Sciences Meeting Kissimmee, FL January 5-9, 2015

Ameri Rasserch Center ontary Plan Wind Turn 11-by TT-feot TWT

Outline

NASA

- Background
- Test Objectives
- Test Description
 - -Model design
 - -Instrumentation
 - -Flow conditions tested
- Unsteady Pressure Processing
- Selected Results
- Concluding Remarks

Background

- Agreement between CFD and experiments for Orion CM was poor below Mach 0.7
 - Uncertainty in the CFD-determined capsule flow
 - Wind-tunnel and CFD did not match low-M results from padabort flight test
- Wind-tunnel testing of Orion showed boundary-layer state on heat shield significantly affected CM aerodynamics
 - Reynolds number sensitive for Mach numbers below about 0.7
 - Method of tripping flow also had an effect on the aerodynamics
- NASA Engineering and Safety Center funded study to make measurements on and around an idealized Orion Crew Module shape
- General test overview and preliminary results
 - Ross, J. C., et al., "Comprehensive Study of the Flow Around a Simplified Orion Capsule Model," AIAA paper 2013-2815, 31st AIAA Applied Aerodynamics Conference, San Diego, CA, June 24-27, 2013.

Objectives

- Detailed characterization of the flow around a capsule shape for subsonic/transonic flight
- Document effect of heat-shield roughness
 - Post-entry Avcoat is very rough
- Comprehensive measurement suite
 - 44 Unsteady pressures around heat-shield shoulder and on back shell
 - Wake velocity from near the capsule to ~5.5 capsule diameters downstream - Particle Image Velocimetry (PIV)
 - Detailed pressure over entire model surface Pressure Sensitive Paint (PSP)
 - Boundary-layer transition and separation locations IR Thermography
 - Boundary-layer profiles at one location on the heat shield
 - High-speed shadowgraph videos (6,000 frames per second)

Model Description

- Model is axi-symmetric based on the analytic description of the Orion CM
 - Smooth heat shield
 - Rough heat shield to represent post-entry Avcoat roughness pattern
- Struts used for support
 - Side entry to keep the strut wakes out of measurement plane
 - Stiff support to minimize model deflections and motion
 - Provide optical access for all of the cameras

Heat Shield Details

- Two-layer heat shield fabrication
 - ! " aluminum structural layer
 - ! " polycarbonate outer surface
- Provides enhanced IR signatures for transition/separation visualization

Rough Heat Shield

Micrograph of Dimpling

- Hex pattern scaled from post-entry Avcoat honeycomb roughness (Orion and Apollo)
- ~75,000 dimples machined into plastic outer layer
- PSP coating ~0.002" thick

Tunnel Installation

Test Conditions for Various Measurements

PSP, IR Thermography, Unsteady Pressures, Shadowgraph							_
Heat Shield	Angle of Attack	Mach 0.3	Mach 0.5	Mach 0.7	Mach 0.9	Mach 1.05	
Smooth	30°			1.3x10 ⁶		1.3x10 ⁶	
Smooth	30°	5.3x10 ⁶	8.7x10 ⁶	10x10 ⁶	10x10 ⁶	6.6x10 ⁶	
Rough	15°	5.3x10 ⁶	8.7x10 ⁶	10x10 ⁶	10x10 ⁶	6.6x10 ⁶	
Rough	30°			1.3x10 ⁶		1.3x10 ⁶	Numbers in green
Rough	30°	5.3x10 ⁶	8.7x10 ⁶	10x10 ⁶	10x10 ⁶	6.6x10 ⁶	boxes indicate Revnolds number
Boundary-Layer Surveys, Skin Friction, IR Thermography							tested
Heat Shield	Angle of Attack	Mach 0.3	Mach 0.5	Mach 0.7	Mach 0.9	Mach 1.05	Black boxes
Rough	0°	5.3x10 ⁶	8.7x10 ⁶	10x10 ⁶			not tested
Rough	15°	5.3x10 ⁶		10x10 ⁶		6.6x10 ⁶	
Rough	30°	5.3x10 ⁶		10x10 ⁶		6.6x10 ⁶	
PIV, Unsteady Pressures, Shadowgraph - Rough heat shield							_
Model Position	Angle of Attack	Mach 0.3	Mach 0.5	Mach 0.7	Mach 0.9	Mach 1.05	
Downstream	15°	5.3x10 ⁶	8.7x10 ⁶	10x10 ⁶			
Upstream	15°	5.3x10 ⁶	8.7x10 ⁶	10x10 ⁶			

Unsteady Processing Parameters

- Sample rate of 6400 samples / sec
 - 2.5 kHz bandwidth
- 4096 point FFT
- 25% overlap
- Energy corrected Hanning window
- 30 to 50 averages
- Cp' spectra

 $-\,d\mathsf{B}=20\,\log_{10}(\mathsf{Cp'})$

Separation Rough Heat Shield, M 0.7, " = 30° , Re_D = 10×10^{6}

Effect of Heat Shield Roughness on Capsule Flow M = 0.7, " = 30°, $Re_D = 10 \times 10^6$

Effect of Reynolds Number on Spectral Amplitude M = 0.7, " = 30°

NASA

Effect of Reynolds Number on Shedding Frequency M = 0.7, " = 30°

 $Re_{D} = 1.3 \times 10^{6}$

$Re_D = 10 \times 10^6$

Shih, W.C.L., Wang, C., Coles, D., and Roshko, A., "Experiments on Flow Past Rough Circular Cylinders at Large Reynolds Numbers," *Journal of Wind Engineering and Industrial Aerodynamics*, vol. 49, pp. 351-368, 1993.

Effect of Mach Number on Shedding Spectra $" = 30^{\circ}, \# = 0$, High Re

Referenced to K01

17

Helical Shedding Mode M = 0.7, " = 30°, $Re_D = 10 \times 10^6$, Rough Heat Shield

18

Summary

- Comprehensive data set now available of flow around generic capsule at variety of subsonic/transonic conditions
- Unsteady pressure results
 - Spectra is a good indicator of separation
 - Spectra is Reynolds dependent
 - Shedding frequency shifts for rough heat shield at high Re
 - Capsule is more stable at higher Mach
 - Helical shedding is similar to CFD results