National Aeronautics and Space Administration

CAN SIMULATION CREDIBILITY BE IMPROVED USING SENSITIVITY ANALYSIS TO UNDERSTAND INPUT DATA EFFECTS ON MODEL OUTCOME?

J. Myers¹, M. Young², D. Goodenow¹, A. Keenan², M. Walton², L. Boley²

1. NASA Glenn Research Center

2. Wyle Science, Technology & Engineering Group

Its Really About Model Credibility! Achieving a high level of belief or trust in the model

• NASA-STD-7009

 Standard for Models and Simulations (M&S)

Eight Factors

- Verification
- Validation
- <u>Input Pedigree</u>
- Results Uncertainty
- Results Robustness
- Use History
- M&S Management
- People Qualifications

Generic STD-7009 Credibility Assessment

Credibility Assessment		Evidence			Technical Review		Factor	Weighted	Overall	Sufficiency
Factors		Score*	Weight⁺	Threshold*	Score*	Threshold*	Score	Subfactor Score	Score	Threshold
1	Verification	2	0.20	3	2	3	2	0.40		
2	Validation	2	0.25	2	2	3	2	0.50		
3	Input Pedigree	2	0.10	3	2	3	2	0.20		
4	Results Uncertainty	0	0.10	2	0	3	0	0.00	1 75	2 54
5	Results Robustness	2	0.10	2	2	3	2	0.20	1./5	2.54
6	Use History	1	0.15	2	N/A	N/A	1	0.15		
7	M&S Management	2	0.05	3	N/A	N/A	2	0.10		
8	People Qualifications	4	0.05	3	N/A	N/A	4	0.20		

* Maximum = 4; where 0=insufficient evidence and 4=highest fidelity/rigor achievable

+ Minimum = 0.05, maximum = 0.25 and sum of all weights must equal 1.0

Problem with "Input Pedigree" Ranking

- A complex model integrating many factors can have a wide array of input pedigree scores across the range of model parameters
 - Source, quality of the data, type of data
- From NASA-STD-7009: Input Pedigree (Ranking) involves the evaluation of *all data that is used as input for the current M&S results*. It includes not only data that is unique to the model, but also data that is produced by other simulations.
- Implication: Model and Simulation Input Pedigree Ranking is equivalent to the *lowest input pedigree* of the model parameters (i.e. logical AND).

Question:

- In practice, the Input Pedigree ranking of complex multiparameter models tends to be low, resulting in lower than expected model and simulation credibility.
- Question: Is this evaluation of credibility true for all applications and simulations of the model?

Considerations:

- Application credibility differs from the model credibility with respect to input pedigree.
- Application credibility can be more precisely determined using Sensitivity analysis (also known as Results Robustness) to address relative importance of input parameters.

Sensitivity Analysis Methodology

- Saltelli: "Sensitivity Analysis is the study of how variation in the output of a model can be apportioned, qualitatively or <u>quantitatively</u>, to different sources of variation (input) and how the given model depends upon the information fed into it."
- Partial Rank Correlation Coefficient (PRCC) Analysis
 - Provides the linear relationships between two variables (one input parameter and one output parameter) when all linear effects of other variables are removed after rank transformation.
 - Rank Transformation: transforms non-linear monotonic relations to linear.
- *KEEP IN MIND* the difference in a contributing parameter and a sensitive parameter
 - Many parameters contribute substantially to the mean output of the model
 - Low sensitivity may indicate a "DC-signal effect" over the range of model application and parameter variance
 - Parameter variance affecting model output (magnitude and variance) indicates a sensitive parameter

Using IMM for ISS mission 6 crew members

- IMM Provides probabilistic analysis of 99 medical condition occurrences and impact to mission outcomes
- Context : 6-month, 6 crew (M-4, F-2), ISS med kit, and evacuation is possible
- Output:
 - Crew Health Index (crew available time time lost due to medical events)
 - Probability of consideration of evacuation

Sensitivity Analysis Results: Crew Health Index for 6 Month Mission to the International Space Station

Sensitivity Analysis Results: Consideration of Evacuation for 6 Month Mission to the International Space Station

8

- Weighted averaging of the sensitivity scores uses the PRCC output (W_{PRCC})to "weigh" parameter pedigree (IP_i)
- For this analysis assume

 $IP_{total} = \frac{\sum W_{PRCC,i} IP_i}{\sum W_{PRCC,i}}$

- One input parameter ranked at 1, the rest are 3
- Originally a strict "Std-7009" Input Pedigree Score = 1

Eye Chemical Burn - IP _{total}	100 Conditions	25 Most Influential Conditions		
CHI	2.944	2.918		
Consideration of Evacuation	2.772	2.935		
VIIP - IP _{total}	99 Conditions	25 Most Influential		
VIIP - IP _{total}	99 Conditions	25 Most Influential Conditions		
VIIP - IP _{total} CHI	99 Conditions 2.963	25 Most Influential Conditions 2.959		

Interpretation: Threshold Specification

- Set a threshold value below which the contribution of the parameter is considered to be small
 - Pedigree of data below this level is not considered in the assessment of simulation input pedigree
- Assume conservative threshold to be a PRCC =1/n = 0.01 and a more lenient threshold to be PRCC = 2/n = 0.02
 - n = the number of parameters
- For this analysis assume
 - One input parameter ranked at 1, the rest are 3
 - Strict "Std-7009" Input Pedigree Score = 1

Threshold Analysis Results

CHI

Conservative Threshold +/-0.01

Less Conservative Threshold +/-0.02

	W _{PRCC}	IP - Con	IP - LCon
VIIP	-0.41	1	1
Eye Chem Burn	-0.07	1	1
Dental Carries	-0.13	1	1

Consideration of Evacuation

	W _{PRCC}	IP - Con	IP - LCon
VIIP	0.04	1	1
Eye Chem Burn	0.02	1	3
Dental Carries	0.002	3	3

Conclusions

- Sensitivity analysis can be used to better characterize the input pedigree ranking of specific simulations
- One analysis is insufficient to characterize the input pedigree ranking for all possible analyses – Case by case basis
- Method used to evaluate input pedigree requires further investigation
 - Current sample approaches are reasonable but not optimized
 - Quantification should be repeatable and consistent with other communications components of 7009 to maintain decision making information quality

Future efforts will address

 More appropriate definitions of cutoff thresholds, allowing a distinction in numerical noise and statistical significance National Aeronautics and Space Administration

INTEGRATED MEDICAL MODEL OVERVIEW

Thank you!

CHI – All Conditions

NASA

Consideration of Evacuation – All Conditions

