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Background

In some aircraft designs the jet exhaust 

is close to a surface. This raises noise 

issues due to jet-surface interaction.

A research effort was initiated in 2012 

to investigate this experimentally in 

the GRC AAPL (Dome) facility.

In a preliminary experiment in a smaller facility (CW17), an unexpected 

resonant interaction was encountered. 

While larger-scale experiments with realistic flight hardware were conducted in  

the AAPL, the resonance problem was pursued in CW17. 

A simple geometry of a flat plate near a 8:1 rectangular jet was studied. 

Ohio State U. seminar, Nov 20,  2015 Zaman/GRC



4

NASA Glenn Research Center 

Motivation and Objective

An understanding of the resonance is important. It would be unacceptable not 

only for high noise but also structural concern.

Earlier results isolating structural vibration effects and on flow field details 

presented at SciTech 2014 (AIAA Paper No. 2014-0877). 

This paper addresses specifically the feedback process in the resonance with 

data obtained since the last meeting. 
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Experimental setup in CW17

Nozzle

L

Plate

Nozzle is one from

family of nozzles 

used in the AAPL expt 

Noise spectra obtained

by overhead mics

all data shown for 

 = 60

All lengths given in 

inches

L, xTE, xLE, z and Mj

are varied

Ohio State U. seminar, Nov 20,  2015 Zaman/GRC



6

NASA Glenn Research Center 

Schlieren pictures for varying z-location 

L=8 plate, xTE = 8.5; Mj = 0.96 

z = - 0.5

z = - 1.0

z = - 1.35

z = - 3.3

Resonance occurs for intermediate position of plate, not too close not too far
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SPL spectra for varying z-location 

L=8 plate, xTE = 8.5; Mj = 0.96 

Sharp tone is heard for z range of about -1.2 to -1.8
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SPL spectra for L= 6, 8 and 12 plates with xTE= 8.5, z= -1.55, Mj = 0.96 

Spectral peaks shift even though TE is at same location for all three plates

Conflicts with simple feedback hypothesis between plate’s TE and nozzle
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SPL spectra for fixed TE location but varying L

xTE = 8.5, z = -1.55; Mj = 0.96 
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L = 12.5 (in)

TE held fixed but spectral peak frequencies vary

Streamwise length L is varied in

increments of ½” by combination 

of ½”, 1”, 1-1/2” and 2” bars
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SPL spectra for fixed LE location but varying L

xLE = 0, z = -1.8; Mj = 0.96 
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Spectral peak frequencies also vary while LE is held fixed

Thus, both TE and LE come into play in frequency selection
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Frequencies of 3 tallest peaks in spectra

fixed TE location but varying L; xTE = 8.5; Mj = 0.96 
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Eqn. 1

There is an order in the spectral peak frequencies!!

All fall in one or another distinct band 

(Equation is explained shortly)
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Frequencies of the 3 tallest peaks in spectra

fixed LE location but varying L; xLE = 0; Mj = 0.96 

The same is true for variation of TE location, with LE remaining fixed
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Frequencies of the 3 tallest peaks in spectra

Varying z-location of L=8 plate; xTE = 8.5; Mj = 0.96 

…and for variation of lateral location of plate
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Frequencies of the 3 tallest peaks in spectra

Varying Mj, L=12 plate ; xTE = 8.5; z= -1.5 

…and for variation of jet Mach number
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SPL spectra with and without sound absorbing material at LE

L= 12 plate, xTE = 8.5; Mj = 0.96 
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Foam on LE

Sound absorbing material attached to LE diminishes the tone

Further evidence that LE comes into play in frequency selection
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SPL spectra with and without a gap between nozzle underside and LE

L= 12 plate, xTE = 8.5; Mj = 0.96 

Closing a gap between LE and the underside of nozzle did not change spectra!

(Rules out an ‘unsteady breathing’ due to entrainment around LE as source)
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SPL spectra with and without a bar wedged between nozzle and plate

L= 12 plate, xTE = 8.5; Mj = 0.96 

Placing a hard fence or bar near LE changes the spectra. 

Tone frequency has increased in this instance
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Hypothesis for feedback mechanism 

Vorticity 

Distribution

Diffraction 

From LE

‘Primary’ acoustic waves from TE get distorted by the flow 

Waves from ‘secondary’ source due to diffraction from LE reach nozzle lip 

Undistorted (spatially coherent) and thus more effective in the feedback
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Equation for resonance frequency  

)/2/( sLnMxcf jTE 

Period = vortex passage time over distance xTE/n

+ travel time for acoustic wave over distance of L+s

Prediction from this equation with n=2 shown in all previous charts

Appears to capture the ‘fundamental stage’ for all parametric variation

(1)
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Not everything is explained 
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n =2 predicts the fundamental. Why?

Does not seem to explain the upper stages 

Fixed TE, varying L

xTE = 8.5, z= -1.5

Mj = 0.96
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Summary

-- Simple feedback between plate’s TE and nozzle lip 

is ruled out as the mechanism for sustaining the resonance

-- A hypothesis based on interaction of vortices with plate’s

TE and diffraction from plate’s LE appears to explain the 

main feature of frequency selection

-- An equation based on the hypothesis captures the 

‘fundamental stage’ of frequency variation for all 

parameters considered in the experiment (xTE, xLE, z and Mj)
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Schlieren pictures for varying Mj

L=12 plate, xTE = 8.5; z = -1.5 

Mj = 0.76

Resonance for this configuration is prominent at high subsonic conditions

Mj = 0.86

Mj = 0.99 Mj = 1.06
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SPL spectra for varying Mj

L= 12 plate, xTE = 8.5, z = -1.5 
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L=8 plate 

xTE = 8.5, z = -1.5 

SPL spectra for 4 different polar location; Mj = 0.96 

L=8 plate 

xTE = 8.5, z = -1.0 

Tone heard at all polar locations. No change in 

spectral peak frequencies with varying .
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