

Space Qualification of the Optical Filter Assemblies for the ICESat-2/ATLAS Instrument

Elisavet Troupaki*, Zachary Denny, Stewart Wu, Heather Bradshaw, Kevin Smith, Judy Hults, Luis Ramos-Izquierdo, William Cook

* elisavet.troupaki-1@nasa.gov

Advanced Topographic Laser Altimeter System

ATLAS Receiver Diagram

The Receiver collects light from the target, filters out most of the solar background, and generates electrical signals corresponding to the arrival of individual photons in each of the 6 spots.

SPIE LASE 2015 - 9346-16

ATLAS Optical Filter Assembly

The ATLAS OFA shall:

✓ remove background solar radiation from collected signal while transmitting the laser light to the detectors

✓ provide the means to monitor the etalon tuning to the laser wavelength

Goddard Space Flight Center

ATLAS Optical Filtering Modules

Goddard Space Flight Center

ATLAS Wavelength Tracking Optical Module

Optical Performance (filters)

Measured performance of the 18 flight etalon filters

Parameter	Specification	Performance	
Center Wavelength	532.272 nm +/- 0.012nm	532.264 nm – 532.283 nm	
	in vacuum, at 40°C		
Free Spectral Range	300 +/- 3pm	297.6 pm - 299.9 pm	
Passband full width	30 +/- 2 pm at 50% of measured peak	27.73 pm - 28.80 pm	
	transmission		
Peak transmission	> 90%	96.01% - 98.20%	

Measured performance of the 20 flight blocking (coarse) filters

Parameter	Specification Performance	
Center Wavelength	532.272 nm +/- 0.040nm,	532.245 nm – 532.285 nm
	at 40°C, in vacuum	
FWHM	200 +/- 40 pm	184.0 pm – 195.7 pm
Peak transmission	>80%	82.2% - 90.3%
Out-of-band blocking	OD5 from 250nm to 950nm	OD5 or better

Etalon and filter transmission vs. wavelength at room temperature (left) and at mission operating temperature (right)

Optical Performance (filter assemblies)

Parameter	Requirement	Performance	
Optical transmission	64.4%	71.2% - 78.7% (lab single-mode	
		tunable 532nm laser);	
Bandwidth (FWHM)	$30 \pm 3 \text{ pm}$	31.04 – 32.35 pm	
Center wavelength (vacuum)	532.272nm	532.272 nm, at nominal operating	
		temperature	
Wavelength tunability	greater than ± 15 pm	greater than 25pm	
Solar background rejection	transmittance of no more than 8.5E-	3.7E-5% - 8.5E-5% broadband	
	5% integrated across the solar	transmission between 250nm and	
	spectrum	950nm	
Light tightness	Stray light events of no more than	<500Hz (lab)	
	2KHz light		

Vibration Testing

No change in optical transmission or peak wavelength after vibration testing

Test levels for sine burst and swept sine vibration tests

Type of testing	Axis	Protoflight Level
Sine Burst	Χ, Υ,	15G, 5 cycles conducted at 25Hz
	Z	
Swept Sine	Χ, Υ,	0.63 inches D.A. (5-19.7Hz, 4
Vibration	Z	oct/min sweep rate)
		12.5G (19.7-50Hz, 4oct/min sweep
		rate)

10000

Random vibration levels for x and y axis (left) and z axis (right)

Thermal – Vacuum Testing

Performance in Vacuum

Optical throughput in vacuum (OFM)

Optical throughput in vacuum (WTOM)

Center Wavelength

Wavelength Tunability (temp coeff=3.6pm/°C)

Center wavelength data before and after vibration and thermal-vacuum tests

		Center Wavelength at Nominal Temperature (nm, vacuum)		
OFM #	Nominal Temp	baseline test	after vibration	after TVAC
	(°C)			
1	40.71	532.272	532.272	532.270
2	38.74	532.272	532.272	532.272
3	37.25	532.272	532.273	532.273
4	41.44	532.272	532.270	532.270
5	41.52	532.272	532.275	532.274
6	42.05	532.272	532.276	532.271
WTOM	30.40	532.272	532.271	532.273
CH1	39.40			
WTOM	39.40	532.266	532.268	532.266
CH2				

THANK YOU!

elisavet.troupaki-1@nasa.gov

BACKUP SLIDES

EXAMPLE 1 CONTACT AND LAND ELEVATION SAFELITE Matching the ATLAS laser center wavelength...

Etalon and filter peak transmission wavelength (same as ATLAS center wavelength, specified by ATLAS laser vendor in July 2012) :

532.272nm at 40°C in vacuum

- For any calculation of the index of refraction of air and/or vacuum, the following calculator shall be used: <u>http://emtoolbox.nist.gov/Wavelength/Ciddor.asp</u> assuming standard atmospheric pressure
- \diamond PO awarded for one reference/test etalon to be measured by both OFA and Laser groups
- ☆ Coarse filter sample was sent to etalon vendor in February 2013, who confirmed peak transmission wavelength (in vacuum) of 532.272nm at 40°C.