Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations By ### **Unmanned Aerial System Traffic Management (UTM)** Parimal Kopardekar, Ph.D. UTM Principal Investigator and Manager, NextGen Concepts and Technology Development Project NASA Parimal.H.Kopardekar@nasa.gov ### **Outline** - Main message - Airspace classification - Notional scenario - UAS operator perspective - UTM design - UTM builds - Call for collaborative tests - Summary # Main Message - UTM focuses on low altitude UAS and airspace - UTM development is on-going - Solid response by stakeholders to participate in UTM tests - Sense and avoid would be important aspect of UTM testing - Please respond to RFI on UTM Federal Business Opportunities if you are interested in participating in the tests FedBizOps and UTM (solicitation number UTM09032014) ## **Airspace Classification** Source: Pilot's Handbook of Aeronautical Knowledge, FAA ### **UTM Applications** ### **NOTIONAL SCENARIO** - Near-term Goal Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years - Long-term Goal Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years) # Operator Perspective: Low-altitude Airspace Operations - Is airspace open or closed now and in the near-future? - Which airspace they can operate, which airspace they should avoid? - Will there be anyone else in the vicinity? - UAS, gliders, helicopters, and general aviation - What should I do if I need to change my trajectory? - How to manage a contingency? - Who should operate the airspace and how? # NASA # **UTM Design Functionality** - UAS operations will be safer if a UTM system is available to support the functions associated with - Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns) - Weather and severe wind integration (avoid severe weather areas based on prediction) - Predict and manage congestion (mission safety) - Terrain and man-made objects database and avoidance - Maintain safe separation (mission safety and assurance of other assets) - Allow only authenticated operations (avoid unauthorized airspace use) - Analogy: Self driving or person driving a car does not eliminate roads, traffic lights, and rules - Missing: Infrastructure to support operations at lower altitudes # **UTM – One Design Option** Multiple customers With diverse mission needs/profiles Range of UAVs from disposable to autonomous UAS 1 UAS 2 UAS 3 **UAS** n Low altitude CNS options such as: - Low altitude radar - Surveillance coverage (satellite/ADS-B, cell) - Navigation - Communication ### **Autonomicity:** - Self Configuration - **Self Optimization** - Self Protection - Self Healing - Operational data recording - Authentication - Airspace design and geo fence definition - Weather integration - Constraint management - Sequencing and spacing - Trajectory changes - Separation management - Transit points/coordination with NAS - Geofencing design and adjustments - Contingency management Real-time Wx and wind Wx and wind Prediction Airspace Constraints **Transition** between UTM and ATM airspace Constraints based on community needs about noise, sensitive areas, privacy issues, etc. 3-D Maps: Terrain, humanmade structures Other lowaltitude operations # NASA ### **UAS User Access to UTM** - Cloud-based: user accesses through internet - Generates and files a nominal trajectory - Adjusts trajectory in case of other congestion or pre-occupied airspace - Verifies for fixed, human-made, or terrain avoidance - Verifies for usable airspace and any airspace restrictions - Verifies for wind/weather forecast and associated airspace constraints - Monitors trajectory progress and adjust trajectory, if needed (contingency could be someone else's) - Supports contingency rescue - Allocated airspace changes dynamically as needs change # NASA # **UTM Manager** - Airspace Design and Dynamic Adjustments - Right altitude for direction, geo-fencing definition, community concerns, airspace blockage due to severe weather/wind prediction or contingencies - Delegated airspace as the first possibility - Support fleet operations as well as singular operators (analogy airline operations center and flight service stations) - Overall schedule driven system to ensure strategic de-conflictions (initially, overtime much more dynamic and agile) - Management by exception - Operations stay within geo-fenced areas and do not interrupt other classes of airspace operations in the beginning stages - Supports contingency management ### **UTM System Requirements** - Authentication - Similar to vehicle identification number, approved applications only - Airspace design, adjustments, and geo-fencing - Corridors, rules of the road, altitude for direction, areas to avoid - Communication, Navigation, and Surveillance - Needed to manage congestion, separation, performance characteristics, and monitoring conformance inside geo-fenced areas - Separation management and sense and avoid - Many efforts underway ground-based and UAS based need to leverage - Weather integration - Wind and weather detection and prediction for safe operations ### **UTM System Requirements** - Contingency Management - Lost link scenario, rogue operations, crossing over geo-fenced areas - Potential "9-11" all-land-immediately scenario - UTM Overall Design - Enable safe operations initially and subsequently scalability and expected massive growth in demand and applications - As minimalistic as possible and maintain affordability - Congestion Prediction - Anticipated events by scheduling, reservations, etc. - Data Collection - Performance monitoring, airspace monitoring, etc. - Safety of Last 50 feet descent operation - In presence of moving or fixed objects, people, etc. # **Near-term UTM Builds Evolution** | UTM Build | Capability Goal | |-----------|--| | UTM1 | Mostly show information that will affect the UAS trajectories Geo-fencing and airspace design Open and close airspace decision based on the weather/wind forecast Altitude Rules of the road for procedural separation Basic scheduling of vehicle trajectories Terrain/man-made objects database to verify obstruction-free initial trajectory | | UTM2 | Make dynamic adjustments and contingency management All functionality from build 1 Dynamically adjust availability of airspace Demand/capacity imbalance prediction and adjustments to scheduling of UAS where the expected demand very high Management of contingencies – lost link, inconsistent link, vehicle failure | # **Near-term UTM Builds Evolution** | UTM Build | Capability Goal | |-----------|---| | UTM3 | Manage separation/collision by vehicle and/or ground-based capabilities All functionality from build 2 Active monitoring of the trajectory conformance inside geofenced area and any dynamic adjustments UTM web interface, which could be accessible by all other operators (e.g., helicopter, general aviation, etc.) Management of separation of heterogeneous mix (e.g., prediction and management of conflicts based on predetermined separation standard) | | UTM4 | Manage large-scale contingencies All functionality of build 3 Management of large-scale contingencies such as "all-land" scenario | # **Example Interface** #### UAS area of operations geo-fence Operators may request an area of operation. If granted, a geo-fence is implemented wherein other requests that intersect spatially and temporally with the operation could be denied. #### UAS trajectory geo-fence Operators may request specific trajectory for an operation. If granted, a geo-fence based on the vehicles operating parameters will be created to keep other vehicles within the UTM system from intersecting. #### Airspace constraint geo-fence Airspace that is off limits to UAS operations (airports, TFRs, etc.) will have a geo-fence prohibiting acceptance of plans that intersect. # **Collaborative Testing** - UTM will follow spiral builds approach - Opportunity for SARP team members to participate - Opportunity test SAA capabilities in common conditions to ensure consistently - Contact us if you are interested in participating in tests and UTM project - Immediately need miniature, low cost sense and avoid systems - Vehicle to vehicle - Last/first 50 feet operation: architecture options # **Summary** - Near-term goal is to safely enable initial low-altitude operations within 1-5 years - Longer-term goal is to accommodate increased demand in a cost efficient, sustainable manner - Strong support for UTM system research and development - Collaborate with NASA FedBizOps and UTM (solicitation number UTM09032014) Parimal.H.Kopardekar@nasa.gov # **Summary** - Near-term goal is to safely enable initial low-altitude operations within 1-5 years - Longer-term goal is to accommodate increased demand in a cost efficient, sustainable manner - Strong support for UTM system research and development - Collaboration and partnerships for development, testing, and transfer of UTM to enable low altitude operations - Step towards higher levels of autonomy