STATUS UPDATE

Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations

By

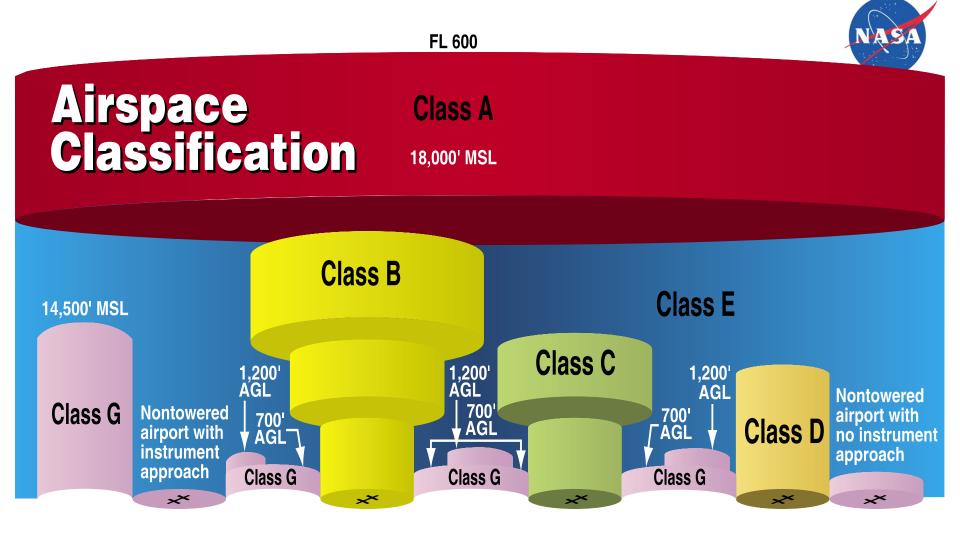
Unmanned Aerial System Traffic Management (UTM)

Parimal Kopardekar, Ph.D.

Manager, NextGen Concepts and Technology Development Project

Joseph Rios, Ph.D.

UTM Sub-Project Lead


Current Team

- Parimal Kopardekar (Concept originator and partnership)
- Joseph Rios (Sub-Project Manager)
- John Robinson (Chief Engineer)
- Tom Prevot (Simulations lead)
- Marcus Johnson (Concept and requirements)
- Jaewoo Jung (Communications)
- Daniel Mulfinger (Software development)
- Corey Ippolito (Test lead)
- Christine Belcastro (Safety analysis)

Outline

- UTM Overview
- Request for Information and Partnerships
- FAA and Technology Transfer
- Concept of Operations
- Requirements
- Demonstration Plan
- Architecture and Software Development
- Next Steps
- Summary

Source: Pilot's Handbook of Aeronautical Knowledge, FAA

NOTIONAL SCENARIO

- Analogy: Regardless of whether a car is self-driving or not, an infrastructure and system governing operations that includes roads, traffic lights, and rules are needed
- Missing: Infrastructure to support operations at lower altitudes

UTM Technical Challenge Description

Safely enable UAS operations at lower altitudes

- Current state of the art: Commercial low altitude UAS operations are not allowed and demand is likely to grow considerably
- **Solution**: Develop a new system called UAS Traffic Management that will support- airspace design, geo-fencing, wind/weather integration, separation management, and contingency operations
- Main activities: UTM builds' design and development, FAA and stakeholder coordination, collaborative testing,
- Benefit: Being able to safely allow UAS at low altitudes
- Stakeholders: National and international interest service providers, UAS operators, system integrators, UAS manufacturers, FAA, FAA test sites, etc.
- Product: UTM requirements and prototype cloud-based system

UTM: UAS Operator Needs

- Access to Airspace
 - Is airspace open or closed now and in the near-future?
 - In which airspace they can operate; which airspace should they avoid?
- Traffic Awareness
 - Will there be anyone else in the vicinity?
 - UAS, gliders, helicopters, and general aviation
- Changes to Trajectory to optimize business
 - What should I do if I need to change my trajectory?
- Contingencies Management
 - How to manage a contingency?
- Airspace Manager
 - Who should operate the airspace and how?

UTM: Role of Airspace Manager

- Airspace Design and Dynamic Adjustments
 - Corridors design, altitude/direction allocation, geo-fencing definition, community concerns, airspace blockage due to severe weather/wind prediction or contingencies
 - Delegated airspace as the first possibility
- Support fleet operations as well as singular operators (analogy airline operations center and flight service stations)
- Overall schedule driven system to ensure strategic de-conflictions (initially, overtime much more dynamic and agile)
- Management by exception
 - Operations stay within geo-fenced areas and do not interrupt other classes of airspace operations in the beginning stages
 - Supports contingency management

UAS User Access to UTM

- Cloud-based: user accesses through internet
- Generates and files a nominal trajectory
- Adjusts trajectory in case of other congestion or pre-occupied airspace
- Verifies for fixed, human-made, or terrain avoidance
- Verifies for usable airspace and any airspace restrictions
- Verifies for wind/weather forecast and associated airspace constraints
- Monitors trajectory progress and adjust trajectory, if needed (contingency could be someone else's)
- Supports contingency rescue
- Allocated airspace changes dynamically as needs change

UTM Design Functionality

- For safe UAS operations, UTM should support:
 - Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns)
 - Weather and severe wind integration (avoid severe weather areas based on prediction)
 - Allow only authenticated operations (avoid unauthorized airspace use)
 - Predict and manage congestion (mission safety)
 - Terrain and man-made objects database and avoidance
 - Maintain safe separation (mission safety and assurance of other assets)

Request for Information

Federal Business Opportunities

- Request of information was solicited through Federal Business
 Operations focused on partnerships and collaborative tests
- Over 95 respondents in the UAS community indicated interest to collaborate with NASA on the development of UTM
- Currently sorting through responses and identifying what various partners can provide
- Universities, private industry, other government agencies all provided responses to the RFI
- No exchange of funds, collaboration to accelerate development, testing, and in-field operations
- Novel partnerships: Vehicle manufacturers, test sites, DOI, insurance companies, academia, communication, surveillance, system integrators, etc.

Collaboration with FAA, NOAA, and DOI

- Formed a research transition team between FAA and NASA that is focused on UTM (as part of overall autonomy thrust)
- Held kick-off meeting to discuss UTM vision
- Conducted FAA, NASA, local UAS industry meeting to understand the needs of the UAS industry and FAA
 - Operational tempo (frequency, density, locations, etc)
- NASA will be UTM technology developer and conduct collaborative tests
- NOAA: Weather service (wind, severe weather) at low altitudes
- DOI: UTM capability to manage national parks (largest landowner)

Student and Faculty Projects

- University of Massachusetts
- Duke University
- Stanford University
- University of California, Berkeley
- Others in planning
 - University of Maryland
 - Rutgers University
 - Boise State University
 - Cal Poly

International Interests

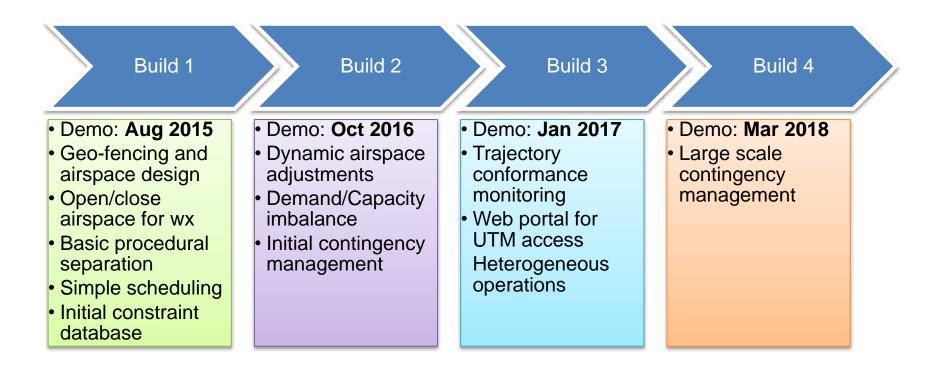
- Korea
- France (Exploring collaboration on similar activity called Mach7)
- Poland
- Japan

Concept of Operations

- Developing ConOps document
- Formalizes the concepts discussed in this presentation
- Seek comments from industry and government partners in the coming months
- ConOps being developed in parallel with requirements documentation and demonstration planning. All are converging

Requirements

 Developing the functional requirements for the system as a whole broken down on a "per build" basis.


Build 1:

- UTM securely communicates with external clients.
- UTM manages UTM airspaces/geo-fences/restricted areas
- UTM provides non-towered-like services to UAS
- UTM provides some level of separation services
- UTM supports replay of a UTM scenario
- All UAS adhere to their accepted plans (no off-nominal scenarios)
- Build 2, 3, 4 each add further services and capabilities.

Schedule

- UTM research and development driven by various "Builds"
- Each Build adds more services and capabilities

UTM Build	Capability Goal
UTM1	 Mostly show information that will affect the UAS trajectories Geo-fencing and airspace design Open and close airspace decision based on the weather/wind forecast Altitude Rules of the road for procedural separation Basic scheduling of vehicle trajectories Terrain/man-made objects database to verify obstruction-free initial trajectory
UTM2	 Make dynamic adjustments and contingency management All functionality from build 1 Dynamically adjust availability of airspace Demand/capacity imbalance prediction and adjustments to scheduling of UAS where the expected demand very high Management of contingencies – lost link, inconsistent link, vehicle failure

UTM Build	Capability Goal
UTM3	 Manage separation/collision by vehicle and/or ground-based capabilities All functionality from build 2 Active monitoring of the trajectory conformance inside geofenced area and any dynamic adjustments UTM web interface, which could be accessible by all other operators (e.g., helicopter, general aviation, etc.) Management of separation of heterogeneous mix (e.g., prediction and management of conflicts based on predetermined separation standard)
UTM4	 Manage large-scale contingencies All functionality of build 3 Management of large-scale contingencies such as "all-land" scenario

Build 1 Demonstration

- Identifying partners
 - Vehicles and auto pilot systems
 - Operators services
 - Logistics, insurance, and etc.
 - Academic institutions
 - Communication and Surveillance
- Plan to run the demo in simulation in early 2015
- Plan to run the initial tests with NASA and/or partner vehicles in Spring 2015
- Full demo at end of summer 2015 with participation of RFI partners
- Test site being determined
 - NASA's Crow Landing is likely, provides us greatest control
 - All UAS Test sites are interested
 - External partners also have sites identified that we may leverage

Build 1 Demo Description

- Two vehicles separated procedurally by staying in their own planned space
- Surveillance provided by operators: they report their own position
- UTM system accepts/rejects plans as they are submitted free of constraint intersection or not
- For testing/safety/post-operations analysis, maintain active surveillance of UAS
- Test various operation plan combinations of: planned, rejected, early ending, etc.

Example Interface

Start Date Time

2014-08-20

End Date Time

2014-08-20

Load Feature

Load Feature

Load Feature Information

Lion 876 - Test Operator [2014-08-20T18:00:00Z ~ 2014-08-20T19:30:00Z]

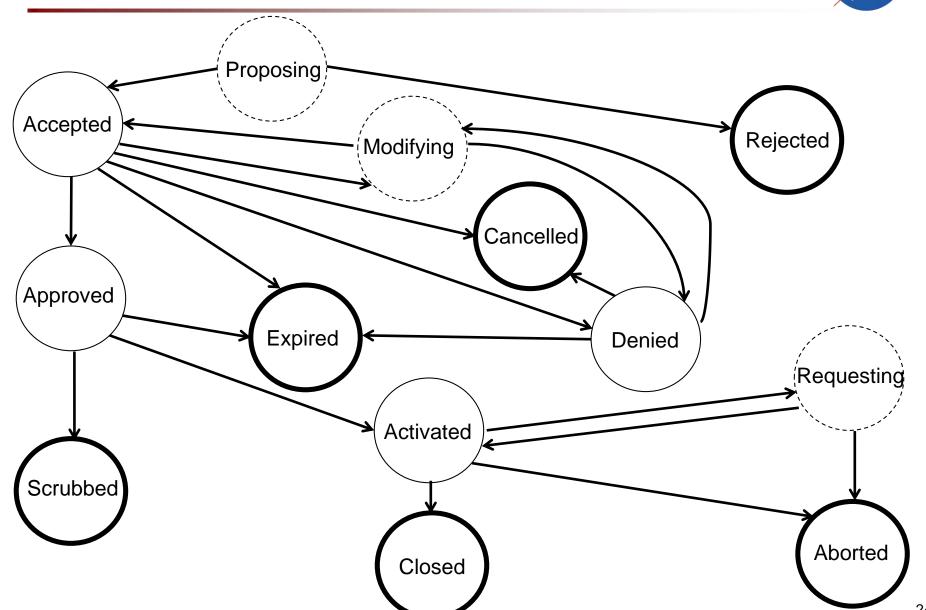
Geo-fenced Areas

UAS area of operations geo-fence

Operators may request an area of operation. If granted, a geo-fence is implemented wherein other requests that intersect spatially and temporally with the operation could be denied.

UAS trajectory geo-fence

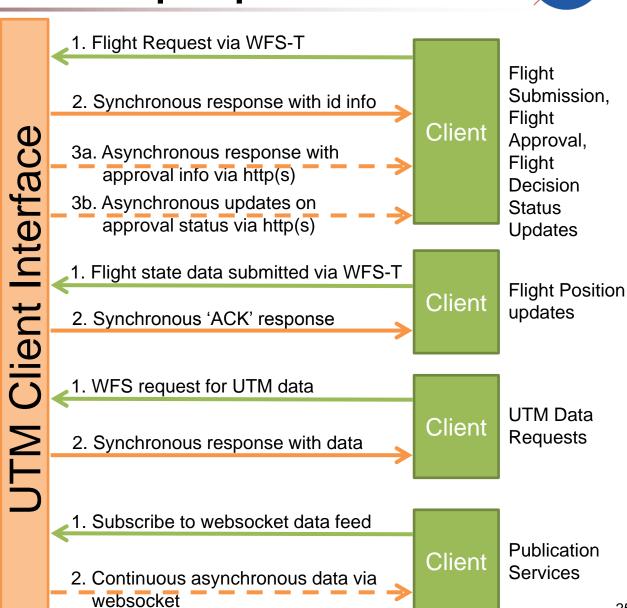
Operators may request specific trajectory for an operation. If granted, a geo-fence based on the vehicles operating parameters will be created to keep other vehicles within the UTM system from intersecting.



Airspace constraint geo-fence

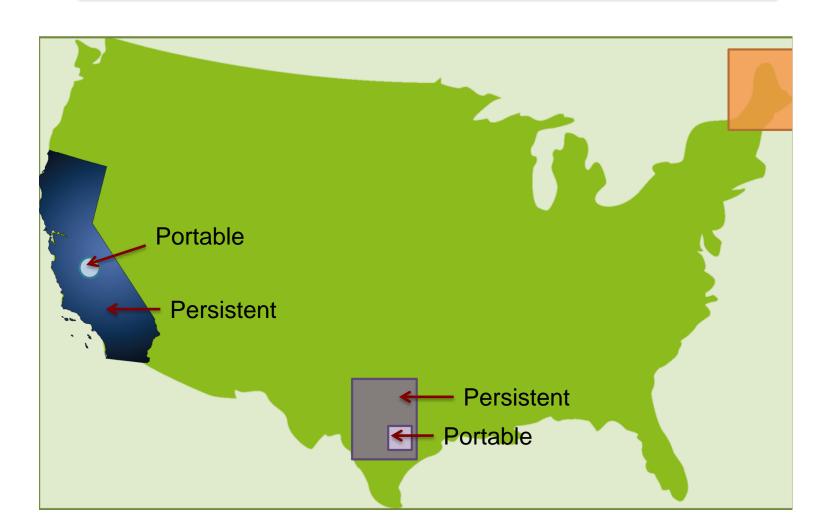
Airspace that is off limits to UAS operations (airports, TFRs, etc.) will have a geo-fence prohibiting acceptance of plans that intersect.

Flight Plan States



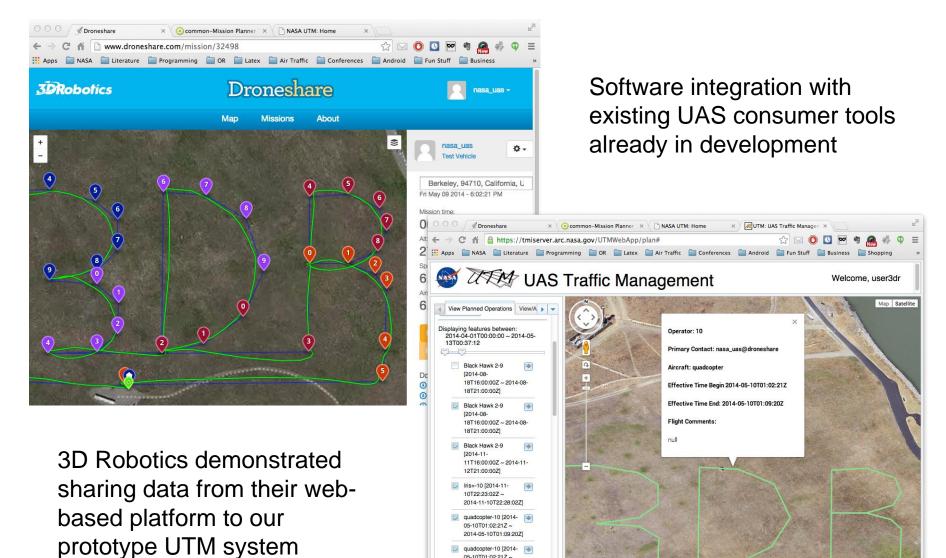
Client services: software perspective

NASA


- Developed initial prototype software to handle client requests.
- Clients can submit a flight plan and track updates via our API.
- Clients can also request data with the system related to flights and constraints

UTM Hierarchical Topology

Portable and Persistent System Can Co-exist


Client development

- Several initial testing partners for interface and integration
- Drone Deploy and 3D Robotics have each developed client software to interact with our prototype
- In discussions with other partners for various system-integration one-off tests
- Initial architecture has been well-received by industry partners

Example: 3D Robotics Integration

05-10T01:02:21Z ~ 2014-05-10T01:09:20Z] quadcopter-10 [2014-05-10T01:02:21Z ~

Category	Total
Budget	\$5M
Procurement (testing, logistics, etc.)	\$2M
FTE and WYEs	13

Note: Budget based on continuing resolution and may adjust

Next steps

- Internal system integration tests in preparation of Build 1 Demo, Spring 2015
- Build 1 Demonstration, summer 2015
- Complete plan and schedule for future builds
- Strengthen external partnerships to leverage others' capabilities and receive buy-in of concept from non-government stakeholders
- Communicate with FAA to ensure solid transfer of technology

Summary

- Near-term goal is to safely enable initial low-altitude operations within 1-5 years
- Longer-term goal is to accommodate increased demand in a cost efficient, sustainable manner
- Strong support for UTM system research and development
- Collaboration and partnerships for development, testing, and transfer of UTM to enable low altitude operations
- Major gathering around UTM late Spring
- Step towards higher levels of autonomy

BACKUP SLIDES

UTM – One Design Option

Multiple customers With diverse mission needs/profiles Range of UAVs from disposable to autonomous

UAS 1

UAS 2

UAS 3

UAS n

Low altitude CNS options such as:

- Low altitude radar
- Surveillance coverage (satellite/ADS-B, cell)
- Navigation
- Communication

Autonomicity:

- Self Configuration
- **Self Optimization**
- Self Protection
- Self Healing
- Operational data recording

- Authentication
- Airspace design and geo fence definition
- Weather integration
- Constraint management
- Sequencing and spacing
- Trajectory changes
- Separation management
- Transit points/coordination with NAS
- · Geofencing design and adjustments
- Contingency management

Real-time Wx and wind

Wx and wind Prediction

Airspace Constraints

Other lowaltitude operations

Transition between UTM and ATM airspace

Constraints based on community needs about noise, sensitive areas, privacy issues, etc.

3-D Maps: Terrain, humanmade structures

Example Research and Development Needs

- Minimum UTM system design and requirements
- Minimum vertical and horizontal separation minima among UAS and other operations (gliders, general aviation, helicopters)
 - Static or dynamic
 - Analytical, Monte Carlo or other types of modeling
- Tracking accuracy and separation minima trade-off
 - Oceanic separation vs en route aircraft separation
- Trajectory models for better prediction of different UAS
- Vehicles and wind/weather related considerations modeling and prediction of winds, eddies, and weather at low altitudes
 - May need to enhance weather prediction capabilities
- Classification of UAS bird strike example

Example Research and Development Needs

- Contingency procedures: large-scale and individual vehicle
- Sense and avoid many products, research activities, and NASA UAS challenge
- Human computer interface design options for UTM manager
- Human computer interaction options for UAS ground control station
 - How many UAS can a ground control station operator manage
- Type of UAS and minimum autonomy capabilities
 - Humans can't operate two rotor failure mode for a multi-rotor vehicle
- Last/first 50 feet operations landing and safety
 - Various sensor pack and networked options for all weight classes
- Vehicle risk category
- Minimum equipage requirements

Consideration of Business Models

- Single service provider for the entire nation such as a government entity
- Single service provider for the entire nation provided by a nongovernment entity (for-profit, or not-for-profit entity)
- Multiple service providers by regional areas where UTM service could be provided by state/local government entities
 - Need to be connected and compatible
- Multiple service providers by regional areas where UTM service could be provided by non-government entities
 - Need to be connected and compatible
- Regulator has a key role in certifying UTM system and operations

Example Student Projects

- Overall UTM design
- UTM interface
- Ground control station interface for multiple vehicle control
- Separation minima analysis (beyond well clear)
- Trajectory definition of UAS
- Wind/weather as related to geo-fencing
- Noise impact modeling
- Highways in the sky design (rules of the road)
- UAS trainer who is qualified to operate? How quickly you can train?
- Wireless infrastructure (e.g., CDMA, LTE, etc.)
- Affordable and light weight sensors for sense and avoid
- Requirements on UAS communication, latency, lost communication, energy depletion, etc. - Minimum
- Last/first 50 feet technology options (sensors, architecture, humanautonomy role, manual input, auto abort, etc.)
- Business case for private industry

Types of UTM

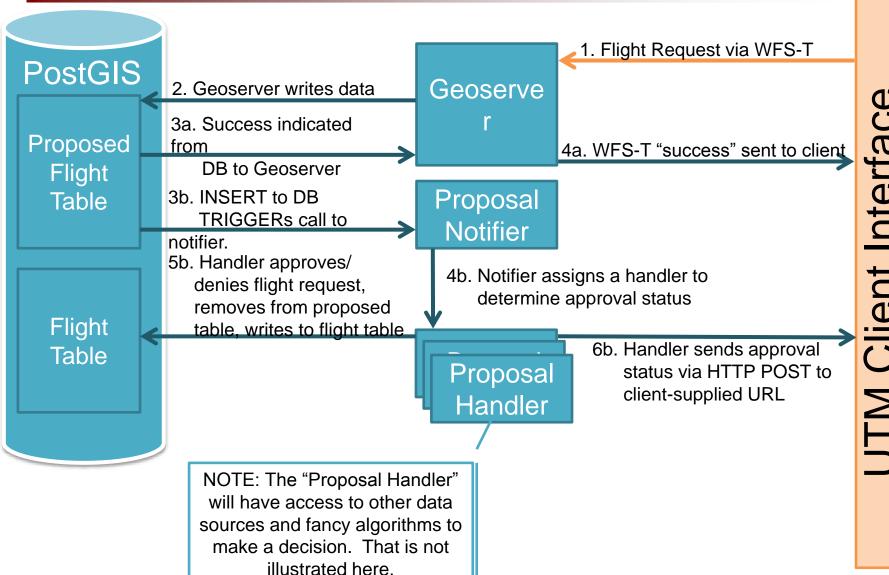
- Portable UTM System: Set up, operate, and move
 - Support humanitarian, agricultural and other applications and be able to move from one location to another
- Persistent UTM System: Sustained, real-time, and continuous operations
 - Denali National Park
 - Between mega-cities
 - Urban areas
- Number of alternative options to design, architect, and operate UTM
 - All ideas are welcome

UAS User Access to UTM

- Cloud-based: user accesses through internet
- Generates and files a nominal trajectory
- Adjusts trajectory in case of other congestion or pre-occupied airspace
- Verifies for fixed, human-made, or terrain avoidance
- Verifies for usable airspace and any airspace restrictions
- Verifies for wind/weather forecast and associated airspace constraints
- Monitors trajectory progress and adjust trajectory, if needed (contingency could be someone else's)
- Supports contingency rescue
- Allocated airspace changes dynamically as needs change

UTM System Requirements

- Authentication
 - Similar to vehicle identification number, approved applications only
- Airspace design, adjustments, and geo-fencing
 - Corridors, rules of the road, altitude for direction, areas to avoid
- Communication, Navigation, and Surveillance
 - Needed to manage congestion, separation, performance characteristics, and monitoring conformance inside geo-fenced areas
- Separation management and sense and avoid
 - Many efforts underway ground-based and UAS based need to leverage
- Weather integration
 - Wind and weather detection and prediction for safe operations


UTM System Requirements

- Contingency Management
 - Lost link scenario, rogue operations, crossing over geo-fenced areas
 - Potential "9-11" all-land-immediately scenario
- UTM Overall Design
 - Enable safe operations initially and subsequently scalability and expected massive growth in demand and applications
 - As minimalistic as possible and maintain affordability
- Congestion Prediction
 - Anticipated events by scheduling, reservations, etc.
- Data Collection
 - Performance monitoring, airspace monitoring, etc.
- Safety of Last 50 feet descent operation
 - In presence of moving or fixed objects, people, etc.

Data Flows

