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NACA to NASA 1915-2015
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NASA Centers
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Neil A. Armstrong

Mystery creates wonder and wonder is the 

basis of man’s desire to understand.
Neil A. Armstrong
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The purpose of 

flight research is

“… to separate 

the real from the 

imagined and 

to make known the 

overlooked and the 

unexpected.”

— Dr. Hugh L. Dryden

Administrator of NACA (1949-1958)

First Deputy Administrator 

of NASA (1958-1965)
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Vision: To separate the real from the 
imagined through flight
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Armstrong Flight Research Center (AFRC)
• Edwards AFB

• Remote location

• Varied topography

• 350 testable days 
per year

• Extensive range airspace

• 29,000 feet of concrete runways

• 68 miles of lakebed runways

• 301,000 acres

• Supersonic corridor
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Aerostructures Branch
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NASA Armstrong Flight Loads Lab
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Test Capabilities

• Proof loading, load 

calibrations, control surface 

proof of operations, loads 

flight test

• Modal test, flutter flight test, 

ASE test, freeplay test, MOI 

test

• Thermal and thermal-
mechanical test, TPS 
development and test, 
pyrometry, SMAs, elastomer 
aerospace applications, 
frangible joint evaluations

• Conventional, high 
temperature, and advanced 
instrumentation (e.g. FOSS) 

Flight Loads Laboratory (FLL)
• Airworthiness

• Research
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Aerostructures
• Airworthiness

• Loads:  External loads; Inertial loads; Store loads; Structural deflections; 
FEA; Stress analysis; Airframe modification evaluation; Structural design; 
Loads calibrations; Proof load testing; Functional testing under load; 
Thermal/mechanical instrumentation; Flight-test support; Envelope 
expansion

• Dynamics:  Modal analysis; Flutter analysis; Ground Vibration Testing (GVT); 
FEM model tuning; Mass property testing; Structural mode Interaction 
(SMI) or Structural Coupling Test (SCT); Dynamics and flutter flight-test 
support; Envelope expansion

• Thermal, Advanced Structures, and Measurements:  Heat transfer; Thermal 
stress; Thermal protection systems/methods; Instrumentation 
application/installation

• FLL:  Ground test execution; Test design; Non-Destructive Evaluation (NDE); 
Instrumentation; Component calibration
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Aerostructures
• Research

• Loads:  Loads calibration techniques; Fiber Optic Strain Sensing (FOSS) 
applications; Testing of advanced structural concepts; Aero-tow

• Dynamics:  GVT methods; MOI methods; Improved flutter flight-test 
techniques; Multidisciplinary Design, Analysis, and Optimization (MDAO) 
tool development; Passive/active control analysis/design of flexible 
structures (multi-discipline); Operational Modal Analysis (OMA); 
Aeroservoelastic (ASE) systems modeling, analyses, and tool development; 
Elevated-temperature modal test and analysis

• Thermal, Advanced Structures, and Measurements:  Hot structures test 
techniques; Hot structures design; Thermal coatings; Thermal protection 
system (TPS) development; Pyrometry; Shape memory allows (SMAs) for 
aerospace applications; Elastomer aerospace applications; Frangible joint 
evaluations (NESC); Instrumentation application; FOSS applications; Non-
contact strain and temperature measurement; High temperature 
instrumentation development; Composites M&P

• FLL:  Thermal/mechanical testing and analysis
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NASA Armstrong Projects



NASA Mission Directorates
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Aeronautics
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X-48C Hybrid Wing Body (HWB) 
• Quiet and fuel-efficient technology demonstrator

• Evaluate the low-speed stability and control for a “low-noise” version of the 
HWB

• Develop control system strategies, including limiters, for robust and safe 
prototype control system for future commercial aircraft

• Conduct flight experiments with the HWB 8.5% dynamically scaled model

• Final flight (30 flights completed) was April 9, 2013
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X-56A Multi-Utility Technology Testbed (MUTT)

• X-56A MUTT is used to explore integrated structural control of extremely 
lightweight flexible aircraft

• Partnership: NASA, AFRL, and LM

• Performance Benefits: Active control of flexible wings = weight reduction = fuel 
savings
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Adaptive Compliant Trailing Edge (ACTE)
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ACTE Project Overview
• Project objective:  Flight demonstrate a compliant structure that replaces a large 

control surface

• Partnership between: NASA, AFRL, and FlexSys Inc.

• ACTE potential performance benefits: 

• Cruise drag reduction, wing weight reduction through structural load 
alleviation, and noise reduction during approach & landing 

• Status:

• Phase 1 complete:  -2 to 30 deg deflection; flight envelope to 0.75, 40kft, 
340 KCAS, 2g load factor

• Phase 2 test planning:  Mach expansion to 0.85; Flap twist for load/cruise 
performance tailoring; Drag characterization; Noise characterization
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Historical Perspective: Mission Adaptive Wing

• Mission Adaptive Wing was a joint USAF/NASA/Boeing demonstration program

• Variable camber leading and trailing edge surfaces were installed on a F-111 
testbed using mechanical rigid linkages

• The AFTI/F-111 MAW system had 59 flights from 1985 through 1988

• The flight test data showed a drag reduction of around 7 percent at the wing 
design cruise point to over 20 percent at an off-design condition

• Mechanical actuation system weight penalties and system complexity hindered 
the acceptance of the technology  
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Compliant Mechanisms Overview
• Compliant design embraces elasticity, rather than avoiding it, to create one-

piece kinematic machines, or joint-less mechanisms, that are strong and flexible 
(for shape adaptation)

• Large deformations can be achieved by subjecting every section of the material 
to contribute equally to the (shape morphing) objective while all components 
share the loads

• Every section of the material undergoes only very small linear elastic strain with 
very low stress and hence the structure can undergo large deformations with 
high fatigue life
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ACTE Airworthiness 
• New structure designs required tailoring center processes for clearing the 

structure for flight

• Analysis, ground testing, and health monitoring techniques were all utilized
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Supersonics/High Speed Project
• NASA’s ongoing effort to mitigate sonic boom effects for overland supersonic 

cruise
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Science
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Stratospheric Observatory for Infrared Astronomy

• SOFIA’s 2.5-meter primary mirror, telescope weighs 44,000 pounds

• Missions fly at 43,000 feet to get above 99% of the Earth’s water vapor, which 
blocks much of the infrared radiation from reaching the ground

• SOFIA can deploy around the world to observe transient events or gain better 
astronomical visibility.
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Space Technology
• Armstrong partners with private industry, NASA Centers, and other government 

organizations to advance space technology

• Utilizes aircraft platforms to prove technologies

• Develops unique systems to lower the cost to access space
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Aerostructures Research



Innovative Structures and Sensors
• Compliant mechanisms

• Materials capable of large deformations

• Shape memory alloys
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Loads Monitoring
• Wing load monitoring and analysis

• Force balance load measurement
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Structural Shape Sensing
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Helios Wing In-flight breakup

Need: to monitor inflight deformation

Solution: vision systems

Solution: sensors for measuring deflection



Finite Element Methods for 
Shape Sensing



Background
• Shape sensing is an active area of research at NASA AFRC

• Multiple shape sensing methods are available such as beam bending 
approximations and finite element methods

• Alex Tessler has developed the Inverse Finite Element Method (iFEM) for plate 
and shell three node elements at NASA Langley over the past 10 years

• Eric Miller and Melissa Barnett (summer student) in 2012 implemented a 1-D 
element in Matlab to investigate the usefulness of this method for upcoming 
AFRC flight test projects  
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Beam Approximation Shape-Sensing Analysis

• 1-D integration of classical beam Eqs for 
cantilevered, non-uniform cross-section beams 
(no shear deformation)

• Piecewise linear approximation of strain and 
taper between regularly spaced “nodes” 
where  strains are measured

• Neutral axis is computed from detailed FEM 
(SPAR code) or upper and lower strain 
measurements 

• Incorporates cross-sectional geometry of a 
wing in a beam-type approximation

• Shown to work well for high aspect ratio wings
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Method for Real-Time Structure Shape-Sensing, U.S. Patent No. 7,520,176, issued April 21, 2009.
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iFEM Formulation Framework
• Structure is discretized with iFEM elements, ie. beam, plate, and solid elements

• Elements defined by a continuous displacement field

• Strain-displacement relations: define element strain measures and experimental 
strain gage data

• Element matrices are derived from a least squares smoothing functional

• Apply boundary conditions

• Solve for the nodal displacements

• Using the nodal displacements the full field stresses and strains can be derived
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inverseFEM Formulation (1-D Beam)

• 1-D linear Timoshenko beam implementation

• Includes transverse shear effects

• Nodal Displacement Vector:

• Measured Strains: 

• Fiber Bragg Grating fiber or axial metallic foil strain gage 
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Strain Displacement Relation (1-D Beam)

• Nodal Displacement Vector:

• Strain Displacement Relation:

• Beam Strain Measures:
• Normal Strains

• Curvature (Bending) Strains
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Experimental Strains (1-D Beam)

• Strain displacement relation in terms of experimentally measured strains
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Weighted Least Squares Functional
A weighted least-squares smoothing functional in terms of the unknown nodal 
displacement degrees of freedom

where the squared norms are

n                        number of strain sensors located within an element

we wk wg weighting constants or penalty parameters associated 
with individual strain parameters  
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inverseFEM Formulation
• Minimize the functional with respect to nodal degrees of freedom

• Linear equations:

• Nodal Coordinates

• Element Connectivity

• Boundary Conditions

• Element Strains

• Solve for nodal displacements
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iFEM Implementation Framework

Direct – Finite 

Element Method
(Requires: Node 

Coordinates, Element 

Connectivity and 

Geometry, Material 

Properties, Boundary 

Conditions)

Inverse – Finite 

Element Method
(Requires: Node 

Coordinates, Element 

Connectivity and 

Geometry, Element 

Strains, Boundary 

Conditions)

Prescribed 

Displacements
(Requires: Node 

Coordinates, Element 

Connectivity and 

Geometry, Material 

Properties, Boundary 

Conditions)

Experimental Strains 

from Strain Sensors

Nodal 

Displacements, 

Stresses and 

Strains

Nodal 

Displacements
Full Field Stress 

and Strain
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AFRC iFEM Application
• Structural deformation results are shown 

for a morphing aircraft structure using 
direct and inverse methods

• The surface of the structure was 
instrumented with Fiber Bragg Gratings for 
measuring the chordwise strain distribution

• Structure was deformed during 
experimental testing and the strains and 
displacements were recorded

• Direct Finite Element Method (FEM) results 
were calculated using representative 
boundary conditions

• Inverse FEM results were calculated using 
the surface strain measurements

• Experimental displacements shown as black 
dots were measured using a continuous 
moldline measurement tool
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Representative Boundary Conditions Were Applied

Fiber Optics Installed on the surface

Morphing Structure



Tip deflection wmax of the beam 
loaded by a transverse concentrated 
force Fz at f0=450 Hz.

Shape sensing of 3D frame structures
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Three-dimensional frame 
structure problem

Marco Gherlone, Priscilla Cerracchio, Massimiliano Mattone, Marco Di 

Sciuva, Alexander Tessler



Benefits of iFEM

• Architecture uses standard FEM

• Superior accuracy on coarse meshes (advantage of integration)

• Beam, frame, plate, shell and built-up structures

• Use of partial strain data (over part of structure, or incomplete strain tensor 

data)

• Strain-displacement relations fulfilled

• Least-squares compatibility with measured strain data

• Independent of material properties

• Geometrically linear and nonlinear response

• Dynamic regime 

• Composite and sandwich structures
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Conclusions
• Exciting time to be a structures engineer

• Innovative structures, sensors, and analysis techniques are being developed
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