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Abstract—We develop single-event risk Prior probability
distributions based on historical and heritage data. The Priors
can be used to bound single-event effects risk for testing, part
selection and design.

Index Terms—probabilistic risk assessment, radiation effects,
reliability estimation, quality assurance, radiation hardness
assurance.

I. INTRODUCTION

Cost constraints and microelectronic scaling have made low-
cost platforms among the fastest growing sectors of the space
industry. While such simple, cheap platforms facilitate rapid
development and make satellite missions feasible for
universities and small research laboratories, radiation effects
threaten these efforts, and radiation hardness assurance (RHA)
costs often strain budgets and schedule for such low-cost, risk-
tolerant missions. This has proven especially true for threats
arising from single-event effects (SEE).

Unfortunately, conventional SEE risk analysis
methodologies have proven difficult to adapt to the budgets
and risk tolerance of these missions. Such methodologies
require that risks be bounded using empirical data, and test
costs for obtaining such data are high. As such, many low-cost
satellite projects have no comprehensive RHA strategy beyond
“best effort.”

Absent rigorous RHA, projects lack appropriate risk metrics
for component selection, design choices, derating and
operational constraints. A risk mitigation method that bounds
risk at all design stages could benefit low-cost, risk-tolerant
missions by providing a metric for making such decisions as
well as prioritizing decisions for allocating scarce testing
resources to achieve maximum risk reduction. We previously
developed Bayesian risk reduction strategies for Total Ionizing
Dose (TID) degradation [1]. Here we develop similar
Bayesian methods for SEE, which represent a more life-
limiting threat for many low-cost, short missions in benign
radiation environments. We first outline the strategy and then

Manuscript received August 1, 2013. The authors thank the NASA GSFC
IRAD program for support of this research and Sana Rezgui of LTC for
tirelessly fielding questions about fabrication processes and design.

R. L. Ladbury is with the NASA Goddard Space Flight Center, Greenbelt,
MD 20771, USA (phone: 301-286-1030; fax: 301-286-4699; e-mail:
raymond.l.ladbury(@nasa.gov).

M. J. Campola is with the NASA Goddard Space Flight Center, Greenbelt,
MD 20771, USA, micael j.campola@nasa.gov).

apply it to specific radiation risks, including single-event
latchup (SEL) in commercial analog-to-digital and digital-to-
analog converters (ADCs and DACs) and single-event
transients (SETs) from operational amplifiers (op amps).

II. BAYES’ THEOREM AND RISK

The goal of this RHA method is to bound SEE failure
probabilities for a component in its application. Because such
bounds can be thought of as subjective probabilities (that is,
they depend on the state of our knowledge when we calculate
them), this task is well suited to Bayesian probability. As with
any SEE risk methodology, we would ideally base predictions
of flight performance on the most specific and representative
data—SEE test data for the flight-lot of the flight part type, or
at least on a contemporaneous lot of that part. In the absence
of such specific, controlled data, one could also look at in-
flight performance of the same part type on previous
missions—so-called heritage data.  While heritage data
provide constraints on the performance of the flight part types
in which we are interested, such data also pose challenges, as
discussed below. If such specific data were not available, the
next level to look at would be SEE performance of similar
parts fabricated in the same process. Unfortunately, since
there is no way of telling whether the flight parts will perform
better or worse than these similar parts, conventional RHA
methodologies can only use such similarity data as a rough
guide. Not only can the Bayesian approach outlined here
place a quantitative bound on likely performance, it can do so
for any desired confidence level (CL) and success probability
P, allowing the RHA method to be tailored to the risk
tolerance of the program.

For similarity data, we cannot speak directly to the
performance of the flight parts. However, since the flight parts
do belong to the larger class of all such parts fabricated in the
same process, we can bound the performance of flight parts as
long as they perform no worse than, for example, the median
part, or the 90% worst case part in that class.

For heritage data, variability arises from differences in the
environment and inherent Poisson fluctuations as well as in
uncertainties about the charge collection geometries of flight
parts.

Bayesian probability deals with changes in the probability
that proposition x is true as we gather new data 4. Prior to the
new data, the probability that x is true is given by the Prior
probability distribution, or “Prior” Py(x). Adding the new data
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A gives us the posterior probability distribution P(x|4) (read

“Pof x given 4™)
plx| 4= PAIDRG) __ PUER 1)
PA)  ([P(Alx)B,(x)dx)

where P(A|x) is the likelihood of our data 4 given x is true, and
the denominator is the probability of A integrated over all
possible propositions x’, where x " includes x. An example of a
proposition x would be that variability of SET rates in op amps
fabricated in a given process is described by a lognormal
distribution with lognormal mean and standard deviation m
and s, respectively. If we have lots of prior experience with
such parts, the Prior Py(x={m’s’}) may be peaked sharply
around x={m,s}, and it would take a lot of contradictory data
to make the Posterior deviate significantly from the Prior.
Alternatively, if we have little experience, the Prior may be
broad and flat. In this case, the Posterior will look like the
likelihood P(4|x) and be determined almost exclusively by the
data. Initial Priors may be based on any data pertinent to and
representative of the flight parts we are considering—
including similarity or heritage data or even expert opinion.
Once a posterior distribution is calculated, it serves as the
Prior for the next time data are added.

III. DATA SOURCES

We summarize the data used in this study in Tables I and II.
We have drawn the data for the following analyses from
publicly available sources, including Radiation Effects Data
Workshop papers [2, 6] and publicly accessible [3, 4, 5]
websites. We determined the process in which the parts were
fabricated by consulting the vendors’ websites or by sending
inquiries to the vendors. As an illustration of the method, we
treat two SEE risks: SETs in op amps and SEL in ADCs and
DACs. Table I shows the part number, manufacturer (Linear
Technology Corp. (LTC) or Analog Devices Inc. (ADI)) and
process, SET rate at geostationary orbit due to galactic cosmic
rays (GCR), worst-case (WC) transient duration and amplitude
and the application conditions for the test. Table II shows
SEL onset linear energy transfer (LET,) and limiting cross
sections (oyum) for ADI ADCs and DACs fabricated in their
0.6 um complementary metal oxide semiconductor (CMOS)
process taken at Brookhaven National Laboratory (BNL) or
Texas A&M University’s cyclotron facility (TAMU),

The main challenges we face with our current method are
gathering sufficient data to ensure adequate representation of
similar parts across a particular fabrication process and
developing metrics that are sufficiently general to apply across
the entire family of devices but still yield meaningful bounds
on likely performance of flight parts. For instance, while SET
rates and widths in op amps yield sufficiently compact
distributions for meaningful modeling, transient amplitudes
depend on application conditions such as supply voltage. As
such, it is preferable to normalize worst-case transient
amplitude to supply voltage, yielding a ratio defined from 0 to
1 that can be modeled with a Beta distribution.

TABLE I: SET DATA FOR ADI AND LTC OP AMPS

pait SET Rate W(‘j W-C Supply Voltage --
Vendor/Process .1, |Duration| Amplitude Output Voltage
Number (day™)
(ps) (v} v)
RH108 [2] |LTC - RH Bipolar 0.011 7 4.5 0/12--6
RH118 [2] |LTC- RH Bipolar 0.046 >5 2 -8/+8--0
RH1014 [2]|LTC - RH Bipolar 0.029 >35 Rail-to-Rail -12/+12--6
RH1499 [3]|LTC - RH Bipolar 0.0082 13 4.4 -15/+415 -- 4
RH1078 [4]|LTC - RH Bipolar 0.04 30 2 0/10--2
OP27[5] |ADI-Bipolar>2.5um | 0.036 10 10 -10/+10 -- Varied
0OP113[2] |ADI - Bipolar > 2.5 pm 0.01 >2 1.7 0/5 -- 2.55
0OP270[2] |ADI - Bipolar > 2.5 um 0.35 1.2 3 -5/45 -- 0.42
0OP400 [2] |ADI - Bipolar > 2,5 um 0.56 10 3 -12/+12 --+2.4
OPOS [5] |ADI - Bipolar > 2,5 ym - 12 --
OP15[5] |ADI - Bipolar > 2.5 pm - 15

TABLE II: SEL DATA FOR ADI 0.6 xM CMOS ADCS AND DACS

Onset LET Test

Part# | Process | (MeVem2/mg) | Facility | g, (cm?)
AD5305 0.6 um LET<11 BNL ??
AD7472 || 0.6um 11<LET<15 BNL 5.00E-04
AD7476 || 0.6 um LET<60 BNL 77
AD7664 0.6 um 6 BNL 2.50E-04
AD7714 || 0.6 um 15<LET<24 BNL 6.00E-04
ADS260 0.6 um 8 BNL ?
AD5334 0.6 um 5 TAMU 5.00E-04
AD7664 0.6 um 4 TAMU 1.00E-03
AD7675 0.6 um 4 TAMU 3.00E-05
AD7714 0.6 um 20<LET<22 TAMU 1.00E-04

IV. BOUNDING SET RATES FOR OP AMPS

Since SET rates are positive definite, we assumed that
variability of SET rates across op amps in a particular process
followed a lognormal distribution. We started with a broad,
uninformative Prior over all possible combinations of
lognormal mean and standard deviation. We then calculated
the likelihood of the SET rate data for each vendor in Table I
for each parametric combination and updated our Prior with
this likelihood. This resulted in the posterior probability
distributions shown in Fig. 1 for the ADI OP series and in
Fig. 2 for the LTC RH series op amps. The probability for a
parametric pair is the probability that SET rates across op
amps in the process follow a lognormal distribution with those
parameters. The lognormal mean m equals the logarithm of
the median SET rate, and the lognormal standard deviation s is
related to the ratio of the arithmetic standard deviation o and
mean g

s =+/In(l+c*/pu?) @)

The parametric combination with the highest probability
gives the best fit to the data, so the expected SET rate for
“typical” op amps in the process is the mean rate for the most
probable fit parameters. For ADI parts, this is 0.055 SETs per
day. The rate at 90% cumulative probability for this
distribution corresponds to the expected rate for the 90%
worst-case (WC) op amp in the process, in this case 0.089
SETs per day.

Moving away from the most probable parametric
combination, we can draw contours containing increasing
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cumulative probabilities.  These cumulative probabilities
correspond to increasing confidence that the actual best fit for
the parts in the fabrication process are contained within the
said contour. By considering distributions within a particular
probability contour, we can bound the rate more
conservatively, taking into account possible biases introduced
by the sample of parts for which we have data. For example, if
we take the maximum 90% WC SET rate (corresponding to
90% cumulative probability of the lognormal) yielded by any
distribution within the 90% cumulative probability contour in
Fig. 1, this will, with 90% confidence, bound the SET rate for
90% of op amps in the process—0.19 SETs per day for ADI
OP series amplifiers. Similarly, using the posterior
distribution in Fig. 2, we found the best estimate for the SET
rate in a typical LTC RH series op amp was 0.027 SETs per
day. The 90% WC op amp (again using the most probable
distribution given our data) was 0.05 SETs per day. With 90%
confidence, less than 10% of LTC RH series op amps would
experience SETs due to heavy ions at a rate of 0.13 SETs per
day.

A significant advantage of this method is that it allows the
confidence level and probability of success to be selected
according to the risk tolerance of the mission and the
application. Moreover, by making these levels of assurance
concrete, it facilitates comparison of radiation risk with those
arising from other sources

In the analysis for both of the above datasets, we have
chosen to model the distribution of transients as lognormal for
purposes of illustration. — However, one can choose other
appropriate distribution forms, such as Weibull, to assess the
distribution dependence of results. Generally, as long as one
starts with an equally broad Prior, the distribution form that
yields the highest peak probability will yield the best fit to the
data.

oTie>
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Fig. 1. Prior probability distribution of SET rates expected for op amps in
ADI’s OP series modeled as a lognormal distribution. The most probable
lognormal mean and standard deviation are -3 and 0.45.

Lirear Technologles
RH Series

Fig. 2: Prior probability distribution of SET rates expected for LTC RH series
op amps modeled as a lognormal distribution. The most probable lognormal
mean and standard deviation are -3.8 and 0.625.

V. BOUNDING SET DURATION AND AMPLITUDE

Similarly, we estimate worst-case transient duration and
amplitude across op amps in a process. Assuming transient
durations vary lognormally across part types for both ADI and
LTC op amps, the resulting Prior distributions are shown in
Fig. 3 for ADI and Fig. 4 for LTC. Table III shows the most
probable and 90% CL bounds on transient width for typical
and 90% WC op amps for both families of op amps.

TABLE IIl: BOUNDING SET WIDTHS FOR ADI AND LTC Op AMPS

Process | Typical | 90% WC | Typical@90% CL | 90%WC@30%CL
ADI 15 ps <35 us 143 ps <218 s
LTC 22 us <35 us 75 ps <170 ps

Despite the limited data in Table I, the best-fit typical and
90% WC transient durations in Table III are consistent with
those seen from op amps under worst-case conditions. When
we consider behavior possible at the 90% confidence level, the
limited data are evident in the much longer transient durations.
This illustrates that the approach taken here is conservative.
As long as data are representative of flight parts, the method
supplies a conservative bound even if data are limited. This
approach encourages the analyst to gather as much data as
possible to narrow the Prior, ensures efficient but not overly
optimistic use of the information and allows the required
probability of success and confidence level to be tailored to
mission risk tolerance.
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Fig. 3: Prior probability distribution for SET width for ADI’s OP series op
amps modeled as a lognormal distribution.
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Fig. 4: Prior probability distribution for SET width for LTC’s RH series op
amps modeled as a lognormal distribution.

Modeling worst-case transient amplitudes is a more difficult
proposition, given the wide range of operating conditions (e.g.,
supply and input voltages, feedback, ezc.) for these parts. One
approach that renders the data more tractable is to model the
ratio of the maximum transient amplitude to the supply
voltage. This yields a number between 0 and 1, which can be
modeled as a Beta distribution. However, because rail-to-rail
transients are common in op amps, even the most probable fit
to the data yields a significant probability of transient
amplitude at or near the rail. For LTC RH series op amps, the
90% worst-case part yields transients ~90% of the rail. For
ADI parts, the 90% worst-case part yields even larger
transients—95% of the rail. These estimates would only be at
the 50% confidence level. This suggests that assuming the
transient amplitude can reach the supply voltage is not only
prudent, but realistic.

VI. BOUNDING SEL RISK

Destructive SEE, such as SEL, are among the most serious
risks facing low-cost, short missions. Unfortunately, bounding
risk for SEL is complicated. Limiting cross sections in Table
IT vary over a factor of 30, making it impossible to form a tight
distribution for SEL rates. SEL susceptibility depends not just
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Fig. 5 Prior probability distribution of SEL onset LETs for ADCs and DACs
fabricated in ADI’s 0.6-um CMOS process. The most probable lognormal
mean and standard deviation are 1.45 and 0.11, respectively, yielding an
expected LET=4.3 MeV-cm*/mg.

on process characteristics, but also on how aggressive the
design is for the process. We have examined data for several
CMOS generations for both ADI and LTC parts, and where
sufficient data exist to reveal it, even LET, seems to be
distributed bimodally. For the ADI 0.6 um process presented
as an example here, one cluster is in the single digits and
another is between 11 and 22 MeV-cm*/mg. SEL
susceptibility also depends on ion range as well as LET, so
short-range ions such as those at BNL serve only as upper
bounds for LET, and lower bounds for limiting cross section.

Since SEL rates are not amenable to modeling due to their
broad spread, we instead look at variability of LET, for SEL.
Since we do not know which mode the flight parts would fall
into, our bound must assume they would belong to the lower
mode. Considering only those parts belonging to the lower
mode from Table II, we update a broad uninformative Prior
over possible lognormal parameters using a likelihood where
TAMU onset LETs are treated as point estimates and BNL
data are treated as upper limits on LET,. Fig. 5 shows the
resulting Prior for variability in onset LET modeled as a
lognormal. Proceeding as before for SETs, we consider the
most probable lognormal distribution given our data. The
most likely typical onset LET for this process is
4.3 MeV-cm’/mg, with the 90% WC part having LET, >
3.7 MeV-cm’/mg. With 90% confidence, the corresponding
onsets would be > 3.9 and > 2.7 MeV-cm%/mg,

Once we have a bound for LET, at the desired confidence
level and probability, we must use it to bound the SEL rate.
One way to do this is to use the Figure of Merit (FOM) [7]
approach to estimate the SEL rate R:

- Olim
R CE * AETO?QS (3)

where Gy is the limiting cross section, LETy .5 is the LET
where the cross section reaches 25% of oy, and Cg is a
constant determined by the mission radiation environment.
For the purposes of bounding the rate, we can substitute LET,
for LET, s, since we know this will over-estimate the rate.
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For oy, we can take the maximum saturated cross section
from Table II— about 0.001 ecm®. For the International Space
Station (ISS) orbit, this corresponds to a rate of less than about
once in 7.5 months with 90% confidence, while in a
geostationary orbit (GEO) the bound would be more than once
per month. Thus, while an arbitrary ADC or DAC might be
acceptable for a short mission on the ISS, it would likely be
problematic in harsher environments.

In addition to the 0.6 gzm CMOS process, we have also
examined the 0.8-2 g CMOS process in a similar manner and
found with 90% confidence that > 90% of ADCs and DACs
would have LET, > 3.5 MeV-cm*mg. For ADCs in LTC’s
120-nm CMOS process, with 90% confidence, > 90% would
have SEL LET,> 3.7 MeV'cmZ/mg. SEL response in both of
these processes appears to be bimodal. Perhaps most notable,
of the 5 parts in ADI’s BiCMOS process for which we could
find data, none exhibited susceptibility to SEL.

VII. UPDATING PRIORS WITH HERITAGE

For the above method to be truly Bayesian, new data must
be generated regularly to update the Priors. If a mission
cannot afford to test critical parts, the mission success or
failure of those parts becomes the data with which we must
update our Prior. If the parts succeed, we can use the lack of
observed failures to constrain the failure rate. Since SEE are
Poisson processes, an observation of 0 failures during the
mission implies the mean or expected number of failures is
less than 2.3 with 90% confidence. Thus, for an identical
mission in an identical environment, the failure rate is less than
2.3/Ty, (90% CL), where T,, is the mission duration.

If the heritage and new missions are in different
environments, we must find a way to equate a heritage mission
duration to an equivalent duration for our desired reference
mission environment. One possible strategy is to use Eq. 3 to
estimate appropriate weights. If Cpy and Cgr are the FOM
coefficients for the Heritage and reference missions, then each
year of the heritage mission counts Wyr=Cgy/Cgr for the
reference mission environment. By this method, each year on
the ISS counts about 1 month in a geostationary (GEO) or
planetary environment. However, we note that the FOM
coefficients represent an overall best fit over many different
parts with different charge collection geometries, and the exact
weight will depend on the geometries of charge collection
volumes as well as the specific environments. To illustrate this
effect, we have estimated rates over a broad range of device
geometries for GEO, a polar orbit (750 km, 98 degrees
inclination, sun-synchronous) and the space station orbit (500
km, 51.6 degrees inclination). We then took the ratio of the
geostationary rate to the polar and space station rates for each
device geometry. Fig. 6 illustrates the range of these ratios,
along with how they compare to the ratio of the FOM
environmental coefficients for the same orbits.
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Fig. 6: Extrapolating heritage mission SEE performance to missions in other
radiation environments requires estimating weights that equate time spent in
the heritage environment with time spent in the new mission environment.
The weights also depend on the charge collection geometries of the parts.
The importance of this effect differs for different heritage and reference
missions—by less than 40% between a polar heritage mission and a GEO
mission and by a factor of almost 4 in going from a space station environment
to 2 GEO mission.

For the polar orbit, the range of weights is tight (2.9 to 4.3),
and the FOM coefficient ratio provides a good estimate of the
weight for all device geometries. However, for the space
station environment, the CREME96 weights span a factor of
~4x (6.5 to 24.6), with the FOM ratio lying roughly in the
middle (~11.7) [8]. This exercise illustrates several important
considerations when using heritage data. First, the more
dissimilar the environments (especially as regards geomagnetic
shielding), the more likely device geometry is to play an
important role in determining the proper weight for the
heritage mission. Second, if we have information about
possible device geometries—e.g., from similarity data—we
may be able to restrict the range of weights that are likely for
our flight parts. This allows more confident use of heritage
data, while also ensuring that it is not given too much weight.
Third, it is important to avoid giving too much weight to
heritage data, especially for benign environments such as the
ISS.  Considering Poisson fluctuations and the range of
weights for conversion of ISS years to GEO years, all we
could conclude as a result of a 5-year mission on board the ISS
is that with 90% confidence we would expect the system to last
longer than 1.1 months in GEO.

VIII.CONCLUSIONS

For short-duration, low-cost missions, SEE are often the
dominant radiation risk. Unfortunately, the lack of a SEE risk
analysis method that allows risk to be tailored to the tolerance
of such missions makes it difficult to bound radiation risk,
complicating part selection, circuit design and mission
planning. This can result in overly conservative designs that
limit performance or in premature failure. What is more, in
many cases, the causes of failure are never determined,
complicating the task of improving subsequent missions. The
preceding analysis seeks to rectify this shortcoming by

To be published in the Institute of Electrical and Electronics Engineers (IEEE) Transaction on Nuclear Science (TNS), Dec. 2013, and on https://nepp.nasa.gov.



infroducing a procedure for deriving Bayesian Prior
probability distributions for SEE from similarity and heritage
data. Provided the data on which the Prior is based are
representative of flight parts, the Prior can be used to bound
flight part SEE risk. The analysis also illustrates some of the
challenges facing such a method, chief among which are
finding sufficient representative data for a representative Prior,
assessing the impact of application specific testing and
developing metrics and models that yield compact
distributions and meaningful predictions for the mission. For
some datasets (e.g., those used for SET rates and durations
here), modeling is straightforward. For others (e.g., for
transient amplitudes), the analysis reveals that the worst case
(e.g., rail-to-rail transients) is, in fact, a realistic possibility and
should be planned for. As we saw for the consideration of
SEL risk, parts of the risk may be modeled (LET, variability
within a process), but additional assumptions are required to
fully bound risk.

The use of heritage data in qualifying parts for new missions
requires special consideration, as the proper weighting of such
data depends not just on the heritage and new mission
environments, but also on the device’s charge collection
geometry. Naively exfrapolating from one environment to
another could result in underestimation of the SEE rate by a
factor of 2 or more.

Ultimately, for the approach outlined here to be truly
Bayesian, we must have new data to update our Prior. If SEE
testing is not an option, the success or failure of the parts
during the mission will serve as our data. This means we must
know not just whether the mission succeeded or failed, but if it
failed, whether the parts in which we are interested caused the
failure. This minimum standard ensures that the method
outlined here is self-correcting and improves continually over
time as well as provides assurance of improved platform
performance over time.

Although the methods outlined here are designed to provide
sufficient flexibility to capitalize on the increased risk
tolerance of low-cost, small satellite platforms, the techniques
should also be useful for conventional satellites. The Priors
allow risk to be bounded at any level of confidence desired by
the project even prior to the availability of SEE test data for
flight parts. Such bounds allow test efforts to be prioritized to
maximize risk reduction. Moreover, by considering test
results in the context of similar parts in the same process, the
method makes it possible to flag outliers, providing early alerts
to possible counterfeit parts, process changes or other out-of-
family results that deserve added scrutiny. The method also
provides a way of using heritage data rationally that avoids
over-optimistic assumptions about the value of such flight
experience. Finally, the Bayesian methods can easily be
extended to allow inclusion of results from physical models or
trends across different processes or even technological node.
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