

Flammability Limits at Reduced-g Experiment (FLARE) Task Group 5

Fundamental Research on International Standard of Fire Safety in Space on the ISS/JEM

<u>Presenters</u>

Alfredo Juarez & Jon Tylka

WSTF Team

Alfredo Juarez, Jon Tylka, Brenton Woods, Susana Harper, David Hirsch, Harold Beeson

Task Group 5

Harold D. Beeson	Comparison of the result of material safet evaluation between an existing NASA-STE 6001 Test 1 test method and a new test method of sofety in space, and discussion	
(NASA WSTF)		
David Hirsch		
(NASA WSTF)		
Susana Harper, Jon Tylka, Alfredo	with JAXA and ESA on coorelation and	
Juarez, Brenton Woods	appropriateness of the test method	
(NASA WSTF)		
Hiroyuki SHIMAMURA		
(Human Space Safety and Mission Assurance	Study of fire safety standard and discussion	
Office, Human Spaceflight Mission Directorate,	on appropriateness of the test method with	
JAXA)	NASA and ESA from Japan's standpoint	
Osamu FUJITA		
(Hokkaido Univ.)		
Thomas Rohr		
(ESA ESTEC)	Study of fire safety standard and discussion on compatibility of the test method with NASA and ESA from European standpoint	
Marika Orlandi		
(ESA ESTEC)		

NASA WSTF TEAM

NASA

Harold Beeson Laboratories Chief

Susana Harper Standard Testing Manager

Testing

Jon Tylka Oxygen Testing

Flammability Expert/Consultant

Task Group Goals/ Timeline

Correlation Pathway to compare NASA-STD-6001 Data to flight LOI data

Evaluate Thickness Effects on MOC

Materials Definition/Procurement

- All Materials ordered and at WSTF
 - LDPE pellets and ETFE Tefzel 750 pellets and Nomex shipped fall 2015
 - Awaiting second drop of funds to ship remaining sheet materials (HDPE, LDPE, PMMA)
- Wire Configuration Materials
 - ETFE Tefzel 750 Pellets
 - LDPE Dupont Series 20 Pellets
- Sheet Materials (tried to purchase materials in various thicknesses)
 - HDPE Tivar 1000 (HD) preferred due to high purity (not radiation crosslinked)
 - 1.6 (2.29) mm, 3.175mm, 4.749mm, 6.35mm
 - LDPE by ASTM D4976
 - 1.6mm,3.175mm
 - Cast PMMA (reduce dripping)
 - 0.8 mm, 2.99mm, 5.99 mm
 - Nomex HT090-40 (AKA HT90-40)

<u>Questions</u>

- What is the maximum material thickness currently being considered?
- Are there any finalist materials that are being focused on?

Phase 2: Hot wire igniter development

Design/Optimize retractable igniter for dual application

Sheet sample edge ignition Rod surface ignition

- Multiple variables changed during iterative steps
- All Tests performed on various thickness of PMMA as a reference material
- Test conditions
 - Previously reported PMMA MOC used as initial concentration to qualify design
 - Chosen to examine ignition @ propagation threshold
 - All design qualification tests performed @ 101.3 kPa (14.7 psia) and ambient temperature

Design Assumptions

- A gap will be left on one edge of holder for retractable igniter to be moved into position (edge ignition)
- Rod configuration will run full length (surface ignition)
- Igniter design limited by sample configuration (20 mm max)

Figure 5. Schematic of the sample holder for the narrow sample for experiments #3 and #4.

Each fuel sample is sandwiched between two sample guide plates (top side and bottom side) so that the sample keeps its flatness and location in the flow duct. This sample geometry will be used for both experiment #3 (PMMA sheet) and #4 (Filter paper sheet).

Figure 6. Schematic of the sample holder for the wide sample. One test sample is sandwiched between two sample guide plates (top side and bottom side) so that the sample keeps its flatness and location in the flow duct. This type of sample is only employed in the experiment #4 (Filter paper sheet).

Provides Sufficient Heat Flux

- Coil Diameter
- Profile
- Length
- Wire Material
- Wire Gauge
- Number of Coils

Effective over wide O2 Range

- Wire Gauge
- Wire Material
- Profile
- Amperage Profile
- Flow Ports

Does not obstruct Flowstream

- Flow Ports
- Retractable
- (injection, cantilever?)

Doesn't Break with Heavy Fuel Load

- Number of Coils
- Diameter
- Profile

Life Span

- Sample Type
- Wire Gauge
- Wire Material
- Amperage Profile
- Retractable

Prevent Sagging

- Channeled/Chamf ered Support
- Amperage Profile
- Wire Gauge

Sample/Igniter Contact

- Coil Bowed by tension
- Chamfered Support (edge/surface ignition)
- Wire Material
- Amperage Profile
- Retractable

Sample/Igniter Contact

Edge Ignition Sheet Sample Configuration

- Bowed igniter due to tension
- Igniter in contact with Sample

Sample/Igniter Contact

Surface Ignition Sample Configuration

- Bowed igniter due to tension
- Chamfered edge allows igniter to protrude beyond support
- For rod sample configuration

Key Features	Experimental Range	Preferred	
Hot wire profile	Helical, sinusoidal, linear	Helical coil	
Length	20, 40 mm	20 mm (0.79 in.)	
Number of coils	4-25	10 coils	
Mandrel diameter	0.0625"-0.25"	0.125"	
Carrier design	Unsupported, solid ceramic, channeled ceramic	Channeled ceramic	
Igniter position	Horizontal, Chamfered	Chamfered	
Amperage profile	Highly Variable; Maximum Power output – 120W (24V/5A)	(5A/5s)/(4.5A/25s)	
Wire material	Nichrome, Kanthal KA-1	Kanthal KA-1	
Wire gauge	18-29 ga	28 ga	

Questions

- Is the system currently designed for a specific retraction method?
 - Will an injection or cantilever method work?
 - Are flight dimensions finalized?
- Will sample holder be conductive?
 - May create problems if contacts hotwire (20mm)
- Is there a prescribed pressure for sample/Igniter contact?

NASA STD 6001 Chemical Igniter/ Recommended Hotwire Correlation

	Nominal Thickness		Material	MOC	MOC per NASA-STD-6001 Test 1	
			Tracking	Testing		010 0001 10001
Material	mm	inch	WSTF #	WSTF #	Chemical (Seq A)	Hot Wire (Seq B)
Tivar 1000	1.6	0.063	15 46766	15 46775	19.00	10.0
(HDPE)	(2.29)	(0.09)	13-40700	15-40775	18.00	18.0
Tivar 1000 (HDPE)	3.175	0.125	15-46767	15-46776	18.04	18.0
Tivar 1000 (HDPE)	4.749	0.187	15-46768	15-46777	In Test	In Test
Tivar 1000 (HDPE)	6.35	0.25	15-46769	15-46778	In Test	In Test
LDPE	1.6	0.06	15-46764	15-46773	18.03	18.03
LDPE	3.175	0.125	15-46765	15-46774	18.03	19.02
РММА	0.8	0.03	15-46770	15-46779	MOC below Ignite Threshold	r Pending
РММА	2.99	0.118	15-46771	15-46780	MOC below Ignite Threshold	r Pending
РММА	5.99	0.236	15-46772	15-46781	MOC below Ignite Threshold	r Pending

SA

Observations

- Failure criteria consisted of NASA-STD-6001.B criteria
 - 6 in. burn length
 - Flame transfer by burning debris
 - MOC result is conservative
- Multiple failures were attributed to the flame transfer rather than burn length
 - Significant melt flow observed
 - Potential to impact microgravity testing
- Burn Length MOC (BLMOC) test performed
 - Removed K-10 Paper
 - Implemented quenching bath to limit impact of flaming debris on test sample

