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Quantum Monte Carlo (QMC)

Quantum Monte Carlo provides reliable solutions to quantum
many-body problems.

It can also be used in classical optimization problems as an alternative
to simulated annealing.

Whether quantum tunneling can be simulated efficiently by quantum
Monte Carlo?
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Why QMC?

Recent Google result (arXiv:1512.02206) showed that there is no
asymptotic speed up when the D-Wave quantum annealer is
compared to QMC, although a constant factor 108 is observed.

There exists an analogy between the tunneling decay of quantum
systems and classical escape-over-a-barrier problem.

J.S. Langer, Theory of Condensation point, Annals of Physics 41, 108 (1967).

M.Buttiker and R.Landauer, Nucleation theory of overdamped soliton motion,

Phys. Rev. Lett. 43, 1457 (1979).
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What is QMC?

Path-integral Monte Carlo works by Trotterizing the partition function in
imaginary time

Z = e−βĤq ≈
P∏
j=1

e−βΓK̂/Pe−βÛ/P = e−βHc (β)/P .
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Tunneling in spin systems

We consider the mean-field model where the system Hamiltonian is
symmetric with respect to permutation of individual spins

Ĥ = −NΓm̂x − Ng(m̂z)

m̂α =
1

N

N∑
i=1

σαi , α = x , y , z

Here g(m) is a nonlinear term that allows for co-existing local and global
minima for m ∈ (−1, 1).

The WKB Hamiltonian is

HWKB(m, p) = −2ΓN
√
`2 −m2 cos p − Ng(m) ,

where ` = 2S/N ∈ (0, 1) and m ≡ mz ∈ (−`, `).
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QMC probability functional

We define the state vector

σ(τ) = {σ1(τ), . . . , σN(τ)}, σ(0) = σ(β)

The probability of a state vector is

P[σ(τ)] = Z−1 exp [−βNE [σ(τ)]] ,

E [σ(τ)] = − 1

β

∫ β

0
g [m(τ)]dτ − J(β)

β

N∑
j=1

κ[σj(τ)] .

The function κ equals to the number of times σj(τ) changes its sign.
Order parameter: the total magnetization

m[σ(τ)] =
1

N

N∑
i=1

σi (τ) .
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QMC probability functional in reduced space

There is a Gibbs probability measure P[m(τ)] = Z−1e−NβF [m(τ)] for the
magnetization order parameter m(τ) (Bapst, Semerjian, 2012)

F [m(τ)] =
1

β

∫ β

0
[m(τ)g ′(m(τ))− g(m(τ))]dτ − 1

β
log Λ[g ′(m(τ))]

Here, the functional Λ[λ(τ)] is

Λ[λ(τ)] = TrKβ,0[B(τ)], K τ2,τ1 = T+e
−

∫ τ2
τ1

dτH0(τ)

H0(τ) = −B(τ) · σ, B(τ) = (Γ, 0, λ(τ)) ,

where σ = (σx , σy , σz) is vector of Pauli matrices. The propagator K
corresponds to a spin-1/2 evolving under the magnetic field B(τ).
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Kramers escape problem

Metastable	  region	  

Stable	  region	  Region	  of	  validity	  
of	  saddle	  point	  	  
approxima7on	  

 
!
ξ

!!q(τ )≈q0

!!q(τ )≈q1
!!qb(τ )

Transi7on	  state	  
!! 
δH [xb(τ )]
δ x(τ ) =0

!!
qt(τ ,t)= − dτ '

0

β

∫
δ 2H

δq(τ )δq( ′τ ) ⋅(q(τ ',t)−qb(τ ',t))

!!WQMC ~e
−(H[qb(τ )]−H[q0 ])/kBT

The system reaches the transition state via thermal fluctuation. Then with

probability ∼ 1/2 it moves toward the global minimum.
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Kramers escape in QMC

QMC samples paths σ(τ, t). When the path m(τ, t) moves from the local
minimum to the global minimum by fluctuation, it has to go through the
transition state mz(τ)

WQMC ∝ e−βN∆F , ∆F = F [mz(τ)]− F (m0) .

Here mz(τ) is the saddle point of the functional F that satisfies the
equation

δF [m(τ)]

δm(τ)

∣∣∣∣
mz (τ)

= 0, mz(0) = mz(β) .
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Instantons in QMC

Variational equations δF = 0 take the form

mz(τ) =
δ log Λ(λ(τ))

δλ(τ)
, λ(τ) =

dU[mz(τ)]

dmz
.

We introduce vector of magnetization components

m(τ) =
Tr[Kβ,τσK τ,0]

TrKβ,0

Optimal trajectory is a classical rotator in nonlinear potential

dm(τ)

dτ
= −2i

∂H0[m(τ)]

∂m
×m(τ)

H0[m] = −Γmx(τ)− U[mz(τ)]
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Instantons in QMC II

Two integrals of motion

H0[m] = e, m(τ) ·m(τ) = `2

Then the solution can be written in the following form:

mx =
√
`2 −m2

z cosh p(mz , e)

my = −i
√
`2 −m2

z sinh p(mz , e)

e(mz , p) = −2Γ
√
`2 −m2

z cos p − g(mz),

The equation for mz(τ) is identical to that of the WKB instanton
trajectory.
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QMC for Curie Weiss model

H

N
= −2Γmx −m2

z − hmz

WQMC = BQMCe
−αN , α = α(β, Γ, h)
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Comparison of QMC and thermally assisted tunneling
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Future work

Quantum Monte Carlo with open boundary condition

Calculate the prefactor for QMC and quantum annealing

More general spin coupling
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