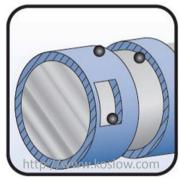
NASA Corrosion Technology Laboratory & NASA Technology Evaluation for Environmental Risk Mitigation

Outline

- Background
- Risk
- Specifications
- Benefits
- Objective
- Testing
- Collaboration
- Summary

Background

- Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
- The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel.
- It is vital to reduce corrosion costs and risks in a sustainable manner.



Background

- The standard practice for protection of stainless steel is passivation.
- Passivation works by forming a shielding outer (metal oxide) layer that reduces the impact of deleterious environmental factors such as air or water.
 - Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use.

Non-Passive Stainless Steel

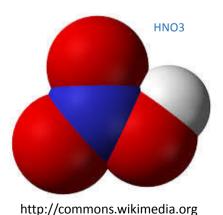
- Free iron particles (un-alloyed iron)
- Damage or a scratch to the passive layer
- Also called active because surface can be prone to corrosion

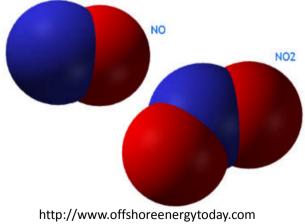
Passivation Process

- Stainless steel is degreased, cleaned and prepped
- Stainless steel is immersed in an acid bath and rinsed

Stripped Down to the Bare Metal

- Raw stainless steel after damaged passive film and contaminates have been dissolved
- Allow 8 24 hours to allow stainless steel to oxidize



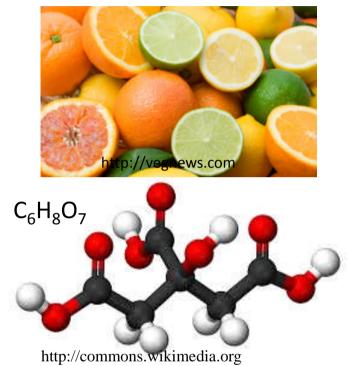

Return to Passive Stainless Steel

- The spontaneous formation of a fresh passive film.
- Stainless steel now ready for a corrosion free service

Risk

- Nitric acid passivation results in fumes that contain nitrogen dioxide and nitrogen oxide (NOx) emissions which are considered greenhouse gases; Best Available Technology (BAT) to be employed to control nitric acid and NOx emissions
- Nitric acid passivation requires 25% or 50% concentration of the strong acid.
- Wastewater generated from the passivation process is regulated under the U.S. Environmental Protections Agency's (EPA) Metal Finishing Categorical Standards
- Nitric acid can remove beneficial heavy metals (nickel, chromium, etc.) that give stainless steel its desirable properties.

Specification


- ASTM A 967 (Standard Specification for Chemical Passivation Treatments for Stainless Steel Parts) and AMS 2700 (Passivation Treatments for Corrosion-resistant Steel), both allow for the use of citric acid in place of nitric acid.
- Citric acid is similarly called out in the ASTM A 380 (*Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems*) standard.
- Citric acid passivation is not a new technology; it was developed (many years ago) for the beverage industry in Germany to process containers that were free of iron which causes an unwanted taste to the beverage.
- While citric acid use has become more prominent in industry in the U.S., there is little evidence that citric acid is a technically sound passivating agent, especially for the unique and critical applications encountered by NASA and ESA.

Benefits of Citric Acid Passivation

- Citric acid is a bio-based material that helps government agencies meet the procurement requirements of the Farm Security and Rural Investment Act of 2002
- There are no toxic fumes created during the citric acid passivation process making it safer for workers.
- Nitric acid passivation requires 25% or 50% concentrations of the strong acid which are extremely corrosive and hazardous to workers.
- Citric acid removes iron from the surface more efficiently than nitric acid and therefore uses much lower concentrations reducing material costs.
- Citric acid-based processing baths retain their potency for longer periods requiring less frequent refilling and reduced volume and potential toxicity of effluent and rinse water.

7

Benefits of Citric Acid Passivation

KSC Corrosion Lab recorded the following data:

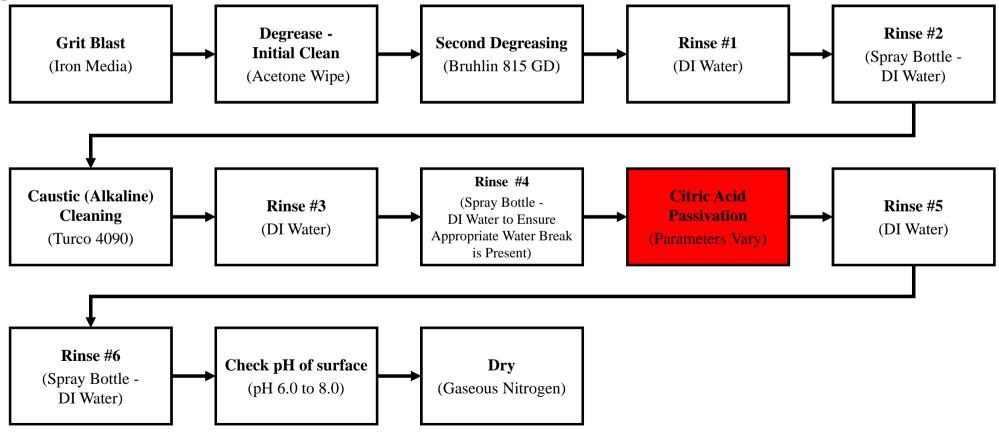
- 4% Citric Acid has a pH of 2.39
- 50% nitric acid had a pH < 1

KSC Process Waste Questionnaire Technical Response Package = TCLP METALS BELOW RCRA REGULATORY LEVELS

- Estimated costs for nitric or citric acid with a pH of < 2 would be about \$235/55 gal drum {€207/208L}
- Estimated costs for these wastes with pH > 2 and no other hazardous waste concerns, such as toxic metals, would be about \$80/55 gal drum {€71/208L}

Objective

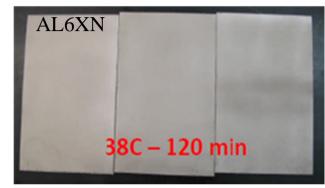
• The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.



Test Specimen Preparation

The NASA Corrosion Technology Lab followed the United Space Alliance (USA) procedure for passivation:

Parameter Optimization


Test panels of each stainless steel alloy were prepared using various process parameters

- Citric Acid Concentration: 4%
- Immersion Times: 60, 90, and 120 minutes
- Bath Temperatures: 100, 140, and 180°F
- Salt Spray Testing per ASTM B 117
- Corrosion Resistance Evaluation per ASTM D 610 every 168 hours
- Parameters resulting in the best corrosion resistance shall be used for preparation of that substrate's test panels for the remainder of the testing

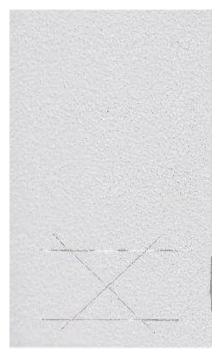
	Process Parameters Used for Testing							
Alloy	Passivation	Concentration (%)	Bath Temperature (°C)	Dwell Time (minutes)				
AL6XN	Nitric Acid	22.5	60	20				
ALOAN	Citric Acid	4	38	120				
A286	Nitric Acid	50	64	30				
A280	Citric Acid	4	82	60				
304	Nitric Acid	22.5	60	20				
304	Citric Acid	4	49	120				
17 (DUI	Nitric Acid	50	64	30				
17-4PH ¹	Citric Acid	4	38	30				
316	Nitric Acid	22.5	60	20				
310	Citric Acid	4	60	90				
321	Nitric Acid	22.5	60	20				
321	Citric Acid	4	82	60				
410	Nitric Acid	50	64	30				
410	Citric Acid	4	82	60				
440C	Nitric Acid	50	64	30				
440C	Citric Acid	4	60	60				
15 5DU	Nitric Acid	50	64	30				
15-5PH	Citric Acid	4	82	60				
17 7 DI	Nitric Acid	50	64	30				
17-7 PH	Citric Acid	4	82	60				
	-	rameters were initially ameters were determin	determined by USA ed by KSC Corrosion Lab					

@ 504 Hours of ASTM B117 Exposure

@ 504 Hours of ASTM B117 Exposure

Alloy	С	Mn	Cr	Mo	Ni	Fe	Si	Р	S	Al	Cu	Ti
AL6XN	0.03	2	20 - 22	6 - 7	23.5 - 25.5	BAL	1	0.04	0.03		0.75	
A286	0.08	2	13.5 - 16	1 - 1.5	24 - 27	BAL	1	0.025	0.025	0.35	0.5	1.9 - 2.35
304	0.08	2	18 - 20		8 - 10.5	BAL	0.75	0.04	0.03			
17-4PH	0.07	1	15 - 17.5		3 - 5	BAL	1	0.04	0.03		3 - 5	
316	0.08	2	16 - 18	2 - 3	10 - 14	BAL	0.75	0.04	0.03			
321	0.08	2	17 - 19		9 - 12	BAL	0.75	0.04	0.03			0.7
410	0.15	1	11.5 - 13.5			BAL	1	0.04	0.03			
440C	0.95 - 1.2	1	16 - 18	0.75		BAL	1	0.04	0.03			
15-5PH	0.07	1	14 - 15.5		3.5 - 5.5	BAL	1	0.04	0.03		2.2 - 4.50	
17-7PH	0.09	1	16 - 18		6.5 - 7.5	BAL	1	0.04	0.03	0.75 - 1.5		

Stainless Steel Alloy Composition


Testing

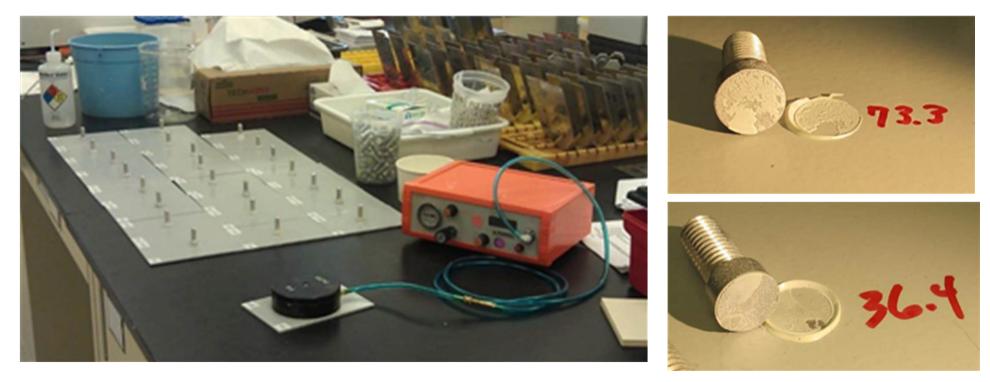
Test	Test Methodology References	Acceptance Criteria	Location
X-Cut Adhesion by Wet Tape	ASTM D 3359		NASA Corrosion
Tensile (Pull-off) Adhesion	ASTM D 4541		
Cyclic Corrosion Resistance	GMW 14872		Technology Lab
	ASTM D 610		NASA Corrosion
Atmospheric Exposure Testing	ASTM D 714		Technology Lab
	NASA-STD-5008		Atmospheric Exposure Site
	ASTM B 117	Alternative performs as well	
	ASTM E 4	or better than control process	
Stress Corresion Creating	ASTM E 8		
Stress Corrosion Cracking	ASTM G 38		NASA Corrosion
	ASTM G 39		Technology Lab
	ASTM G 44 MSFC-STD-3029		
Fatigue*	ASTM E 466		
Hydrogen Embrittlement**	ASTM F 519		
* = Only one alloy was tested; 1	7-4PH		
** = Test specimens were made	of AISI 4340 alloy steel, this is con	nsidered worst case	

X-Cut Adhesion by Wet Tape Testing

24 Hour Immersion @ Ambient Temperature

X-cut Scribed into the Surface

Masking Tape is Affixed to the Surface Using a Roller; Within 90 Seconds, the Tape is removed, Pulling (180-degree angle) Rapidly back upon Itself


X-Cut Adhesion by Wet Tape Testing

Performs as well or better than control process

			Coa	ting Systems		
Alloy	Passivation		Prin	ner / Topcoat		
Ащоу	1 assivation	Sherwin Williams E90H226 & V93V227 /	Sherwin Williams E90H226 & V93V227 /	Sherwin Williams E90W501 & V93V505 /	Carboline Carboguard 893 /	Sherwin Williams
		Sherwin Williams F93G504 & V93V502	Sherwin Williams F93G116	Sherwin Williams F93G106	Carboline Carbothane 134 MC	Polysiloxane XLE2
AL6XN	Citric	$5A^1$	$5A^1$	$5A^1$	$5A^1$	$5A^1$
ALUAN	Nitric	5A ¹	5A ¹	5A ¹	$5A^1$	$5A^1$
17-4PH	Citric	5A ¹	$5A^1$	$5A^1$	$5A^1$	$5A^1$
1/-4611	Nitric	5A ¹	5A ¹	5A ¹	5A ¹	5A ¹
286	Citric	5A ¹	5A ¹	5A ¹	5A ¹	$5A^1$
280	Nitric	$5A^1$	$5A^1$	$5A^1$	$5A^1$	$5A^1$
304	Citric	5A ¹	5A ¹	$5A^1$	$5A^1$	$5A^1$
304	Nitric	5A ¹	5A ¹	5A ¹	$5A^1$	$5A^1$
17-7PH	Citric	$5A^1$	$5A^1$	$5A^1$	$5A^1$	$5A^1$
1/-/111	Nitric	5A ¹	5A ¹	5A ¹	$5A^1$	$5A^1$
410	Citric	$5A^1$	5A ¹	5A ¹	$5A^1$	$5A^1$
410	Nitric	5A ¹	5A ¹	5A ¹	$5A^1$	$5A^1$
155	Citric	5A ¹	5A ¹	5A ¹	5A ¹	5A ¹
155	Nitric	5A ¹	5A ¹	5A ¹	5A ¹	5A ¹
321	Citric	$5A^1$	5A ¹	$5A^1$	5A ¹	$5A^1$
521	Nitric	$5A^1$	$5A^1$	$5A^1$	$5A^1$	$5A^1$
316	Citric	$5A^1$	$5A^1$	$5A^1$	$5A^1$	$5A^1$
	Nitric	$5A^1$	$5A^1$	$5A^1$	$5A^1$	$5A^1$
Note ¹ = $\frac{1}{2}$	5A is the high	est rating available; no peeling or removal o	f the coating at the scribe			

Tensile (Pull-Off) Adhesion

The pull-off test is performed by securing a loading fixture (dolly) to the surface of the coating with an adhesive. After the adhesive is cured, a testing apparatus is attached to the loading fixture and aligned to apply tension normal to the test surface. The fixture is pulled from the surface of the panel and the burst pressure is recorded, that value is converted to produce a value for pull-off tensile adhesion (POTS).

Tensile (Pull-Off) Adhesion – Phase I

		Result PSI (ave) ²		
Alloy	Primer Only	Passi	vation	
		Nitric	Citric	
A-286	Carboline Carboguard 893 ¹	1504	1064	
304	Carboline Carboguard 893 ¹	847	1383	
AL6XN	Carboline Carboguard 893 ¹	1297	1292	
17-4PH	Carboline Carboguard 893 ¹	1131	1292	
$Note^1 = 2$	NASA-STD-5008 Approved Pr	roducts Lis	st	
$Note^2 = 2$	Pull-off values over 500 psi are c	onsidered	passing	

All pull-off values were over 500 psi, and the mode of failure was predominantly related to the adhesive used to glue the dolly to the surface of the panel.

Tensile (Pull-Off) Adhesion – Full Alloy Set

<u> </u>						2			
Alloy	Primer Only	Result PSI (ave) ²	Allov	Primer Only	Result PSI	. ,	Allov	Primer Only	Result PSI (ave) ²
Апоу	FrunerOlly	Passivation	Апоу	FinnerOnly	Passivat	-	Ащоу	Fillner Ollay	Passivation Nitric Citric
		Nitric Citric				Citric	AL6XN		Nitric Citric 504 517
AL6XN		987 985	AL6XN			1005	17-4PH		1052 1252
17-4PH		704 753 704 841	17-4PH			2390 748	286		1045 1212
286 304		704 841 699 757	286 304			678	304		459* 512
		739 816				707	17-7PH	Carboline Carboguard 893 ¹	536 534
17-7PH 410	Sherwin Williams E90H226 & V93V227 ¹	858 946	17-7PH 410	Sherwin Williams E90W501 & V93V505 ¹		819	410	U	481* 528
		838 940 979 1127	155			784	155		496* 523
155 321			321				321		523 523
		995 945				726	316		489* 572
316		753 978	316		713	735		Coatings on the NASA-STD-5008 Appr	
-	Chemical Agent Resistant Coatings		Note ¹ = Chemical Agent Resistant Coatings				$Note^2 = Pull-off$ values over 500 psi are considered passing		
$Note^2 = 1$	Pull-off values over 500 psi are considered p	bassing	$Note^2 = Pull-off$ values over 500 psi are considered passing			Note* = 100% glue failure			
		$\mathbf{D}_{\text{out}} + \mathbf{D} \mathbf{S} \mathbf{I} (\text{out})^2$			D14 D($(1)^2$			P osult PSI $(axa)^2$
Alloy	Coating	Result PSI (ave) ²	Alloy	Ploting	Result PS		Allov	Plating	Result PSI (ave) ² Passivation
Alloy	Coating	Passivation	Alloy	Plating	Passiv	ation	Alloy	Plating	Result PSI (ave)2PassivationNitricCitric
	Coating	PassivationNitricCitric		Plating	Passiv Nitric	vation Citric	Alloy AL6XN	Plating	Passivation
AL6XN	Coating	PassivationNitricCitric12591266	AL6XN	Plating	Passiv Nitric 957	vation Citric 958		Plating	Passivation Nitric Citric
AL6XN 17-4PH	Coating	Passivation Nitric Citric 1259 1266 1164 1040	AL6XN 17-4PH	Plating	Passiv Nitric 957 1871	vation Citric 958 1989	AL6XN 17-4PH 286	Plating	Passivation Nitric Citric 1201 1221 1629 1718 1857 2069
AL6XN 17-4PH 286	Coating	Passivation Nitric Citric 1259 1266 1164 1040 1025 1105	AL6XN 17-4PH 286	Plating	Passiv Nitric 957 1871 2359	vation Citric 958 1989 2113	AL6XN 17-4PH 286 304		Passivation Nitric Citric 1201 1221 1629 1718 1857 2069 1368 1553
AL6XN 17-4PH 286 304		Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918	AL6XN 17-4PH 286 304		Passiv Nitric 957 1871 2359 1542	Zation Citric 958 1989 2113 2287	AL6XN 17-4PH 286 304 17-7PH	Plating Cadmium Plating ¹	Passivation Nitric Citric 1201 1221 1629 1718 1857 2069 1368 1553 516 680
AL6XN 17-4PH 286 304 17-7PH	Coating Sherwin Williams Polysiloxane XLE ¹	Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918 402* 438*	AL6XN 17-4PH 286 304 17-7PH	Plating Hard Chrome Plating ¹	Passiv Nitric 957 1871 2359	/ation Citric 958 1989 2113 2287 1049	AL6XN 17-4PH 286 304 17-7PH 410		Passivation Nitric Citric 1201 1221 1629 1718 1857 2069 1368 1553 516 680 770 894
AL6XN 17-4PH 286 304 17-7PH 410		Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918 402* 438* 432* 479*	AL6XN 17-4PH 286 304 17-7PH 410		Passiv Nitric 957 1871 2359 1542 1255 1086	/ation Citric 958 1989 2113 2287 1049 1189	AL6XN 17-4PH 286 304 17-7PH 410 155		PassivationNitricCitric12011221162917181857206913681553516680770894803830
AL6XN 17-4PH 286 304 17-7PH 410 155		Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918 402* 438* 432* 479* 472* 434*	AL6XN 17-4PH 286 304 17-7PH		Passiv Nitric 957 1871 2359 1542 1255	/ation Citric 958 1989 2113 2287 1049	AL6XN 17-4PH 286 304 17-7PH 410 155 321		PassivationNitricCitric12011221162917181857206913681553516680770894803830620716
AL6XN 17-4PH 286 304 17-7PH 410 155 321		Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918 402* 438* 432* 479* 472* 434* 364* 417*	AL6XN 17-4PH 286 304 17-7PH 410		Passiv Nitric 957 1871 2359 1542 1255 1086	/ation Citric 958 1989 2113 2287 1049 1189	AL6XN 17-4PH 286 304 17-7PH 410 155 321 316	Cadmium Plating ¹	Passivation Nitric Citric 1201 1221 1629 1718 1857 2069 1368 1553 516 680 770 894 803 830 620 716 709 745
AL6XN 17-4PH 286 304 17-7PH 410 155 321 316		Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918 402* 438* 432* 479* 472* 434*	AL6XN 17-4PH 286 304 17-7PH 410 155		Passiv Nitric 957 1871 2359 1542 1255 1086 942	Citric 958 1989 2113 2287 1049 1189 1284	AL6XN 17-4PH 286 304 17-7PH 410 155 321 316 Note ¹ =	Cadmium Plating ¹ Coatings on the NASA-STD-5008 Appr	Passivation Nitric Citric 1201 1221 1629 1718 1857 2069 1368 1553 516 680 770 894 803 830 620 716 709 745
$ \begin{array}{r} AL6XN \\ 17-4PH \\ 286 \\ 304 \\ 17-7PH \\ 410 \\ 155 \\ 321 \\ 316 \\ Note1 = 2 \end{array} $	Sherwin Williams Polysiloxane XLE ¹	Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918 402* 438* 432* 479* 472* 434* 364* 417* 434* 452*	AL6XN 17-4PH 286 304 17-7PH 410 155 321 316		Passiv Nitric 957 1871 2359 1542 1255 1086 942 958	Zation Citric 958 1989 2113 2287 1049 1189 1284 981	AL6XN 17-4PH 286 304 17-7PH 410 155 321 316 Note ¹ =	Cadmium Plating ¹	Passivation Nitric Citric 1201 1221 1629 1718 1857 2069 1368 1553 516 680 770 894 803 830 620 716 709 745
$ \begin{array}{r} AL6XN \\ 17-4PH \\ 286 \\ 304 \\ 17-7PH \\ 410 \\ 155 \\ 321 \\ 316 \\ Note1 = 2 \end{array} $		Passivation Nitric Citric 1259 1266 1164 1040 1025 1105 771 918 402* 438* 432* 479* 472* 434* 364* 417* 434* 452*	AL6XN 17-4PH 286 304 17-7PH 410 155 321 316 Note ¹ =		Passiv Nitric 957 1871 2359 1542 1255 1086 942 958 880	Zation Citric 958 1989 2113 2287 1049 1189 1284 981	AL6XN 17-4PH 286 304 17-7PH 410 155 321 316 Note ¹ =	Cadmium Plating ¹ Coatings on the NASA-STD-5008 Appr	Passivation Nitric Citric 1201 1221 1629 1718 1857 2069 1368 1553 516 680 770 894 803 830 620 716 709 745

Note* = 100% glue failure

GMW 14872 Cyclic Corrosion Resistance - 80 Cycles


Each cycle consists of an 8 hour exposure under ambient conditions (25°C, 45% RH), an 8 hour exposure under high humidity conditions (49°C, 100% RH), and 8 hours under drying conditions (60°C, \leq 30% RH. During the initial ambient stage, the specimens are sprayed with a solution comprised of sodium chloride (0.90%), calcium chloride (0.10%), sodium bicarbonate (0.075%) and water (98.925%).

ASTM D 610:

Standard Test Method for Evaluating Degree of Rusting on Painted Steel Surfaces

Rust Grade	Percent of Surface Rusted
10	Less than or equal to 0.01 percent
9	Greater than 0.01 percent and up to 0.03 percent
8	Greater than 0.03 percent and up to 0.1 percent
7	Greater than 0.1 percent and up to 0.3 percent
6	Greater than 0.3 percent and up to 1.0 percent
5	Greater than 1.0 percent and up to 3.0 percent
4	Greater than 3.0 percent and up to 10.0 percent
3	Greater than 10.0 percent and up to 16.0 percent
2	Greater than 16.0 percent and up to 33.0 percent
1	Greater than 33.0 percent and up to 50.0 percent
0	Greater than 50 percent

Atmospheric Exposure Test

Phase I

National Aeronautics and Space Administration John F. Kennedy Space Center

Corrosion Technology Laboratory Beach Atmospheric Exposure Site

Authorized Personnel Only

ASTM D 610:

Standard Test Method for Evaluating Degree of Rusting on Painted Steel Surfaces

Rust Grade	Percent of Surface Rusted
10	Less than or equal to 0.01 percent
9	Greater than 0.01 percent and up to 0.03 percent
8	Greater than 0.03 percent and up to 0.1 percent
7	Greater than 0.1 percent and up to 0.3 percent
6	Greater than 0.3 percent and up to 1.0 percent
5	Greater than 1.0 percent and up to 3.0 percent
4	Greater than 3.0 percent and up to 10.0 percent
3	Greater than 10.0 percent and up to 16.0 percent
2	Greater than 16.0 percent and up to 33.0 percent
1	Greater than 33.0 percent and up to 50.0 percent
0	Greater than 50 percent

Atmospheric Exposure Test – Passivated Only – (Phase I Samples and Exposure)

		i chioning up wen	of better than co					
		Atmospheric Exposure Test						
Alloy	Passivation	1 Month	3 Month	6 Month	18 Month			
		Average Ranking	Average Ranking	Average Ranking	Average Ranking			
A286	Citric	6	5	5	4			
A200	Nitric	5	4	3	3			
304	Citric	5	5	3	3			
304	Nitric	4	4	2	2			
AL6XN	Citric	9	8	8	7			
ALOAN	Nitric	7	7	7	5			
17-4PH	Citric	4	3	3	2			
1/-4PH	Nitric	4	3	3	2			
The state of the second	TEERM No. Cas	And the second second second						

Performs as well or better than control process

25

Atmospheric Exposure Test – Passivated Only - (Phase II and III Samples)

			Atmospheric Exposure Test			
	Alloy	Passivation	1 Month Average Ranking	3 Month Average Ranking	6 Month Average Ranking	12 Month Average Ranking
Performs as well or better than	AL6XN	Citric Nitric	10 10	8 5	6 4	5 4
control process	17-4PH	Citric Nitric	3 4	2 3	2 3	2 3
Performs worse than control process	286	Citric Nitric	5 5	4 4	4 3	3 3
process	304	Citric Nitric	4 2	3 2	3 2	3 2
Rack 16	17-7PH	Citric Nitric	4 4	4 4	3 3	3 2
1561 1562 151741 151742 151743	410	Citric Nitric	4 3	2 1	2 1	0 0
	155	Citric Nitric	4 4	3 3	3 3	3 3
15 286 1 15 286 2 15 286 3 15 304 1 15 304 2	321	Citric Nitric	4 2	3 2	2 2	2 2
	316	Citric Nitric	5 2	3 2	3 2	3 2

Atmospheric Exposure Test – Passivated & Coated – (Phase I Samples Only)

				Atmospheric Exposure Test				
Alloy	Passivation	Primer	Topcoat	1 Month	3 Month	6 Month	18 Month	
				Average Ranking	Average Ranking	Average Ranking	Average Ranking	
A286	Citric	Carboline Carboguard	Carboline Carbothane	10	10	10	10	
A280	Nitric	893 ¹	134 MC ¹	10	10	10	10	
304	Citric	Carboline Carboguard	Carboline Carbothane	10	10	10	10	
304	Nitric	893 ¹	134 MC ¹	10	10	10	10	
AL6XN	Citric	Carboline Carboguard	Carboline Carbothane	10	10	10	10	
ALOAN	Nitric	893 ¹	134 MC ¹	10	10	10	10	
17-4PH	Citric	Carboline Carboguard	Carboline Carbothane	10	10	10	10	
1/-4[1]	Nitric	893 ¹	$134 \mathrm{MC}^{1}$	10	10	10	10	

Performs as well or better than control process

 $Note^{1} = NASA-STD-5008$ Approved Products List

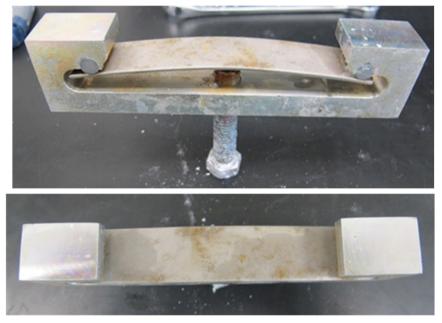

27

Atmospheric Exposure Test – Passivated & Coated – Phase II and Phase III

Testing On-going

Stress Corrosion Cracking

All alloys were loaded into test fixtures and were stressed according to the requirements of ASTM G39.



Samples are then Placed in ASTM B 117 Salt Spray Testing – 1,000 Hours

Stress Corrosion Cracking

After 1000 hours of the salt spray exposure, the samples were removed, photographed, and microscopically inspected for signs of stress corrosion cracking.

Performs as well or better than control process

e	Alloy	Passivation	Stress Corrosion Cracking
	AL6XN	Citric	Microscopic evaluations showed that none of the samples
	ALOAN	Nitric	showed any signs of stress corrosion cracking
	17-4PH	Citric	Microscopic evaluations showed that none of the samples
	1/-4111	Nitric	showed any signs of stress corrosion cracking
	286	Citric	Microscopic evaluations showed that none of the samples
	280	Nitric	showed any signs of stress corrosion cracking
	304	Citric	Microscopic evaluations showed that none of the samples
	304	Nitric	showed any signs of stress corrosion cracking
	17-7PH	Citric	Microscopic evaluations showed that none of the samples
	1/-//11	Nitric	showed any signs of stress corrosion cracking
	410	Citric	Microscopic evaluations showed that none of the samples
	410	Nitric	showed any signs of stress corrosion cracking
	155	Citric	Microscopic evaluations showed that none of the samples
	155	Nitric	showed any signs of stress corrosion cracking
	321	Citric	Microscopic evaluations showed that none of the samples
	321	Nitric	showed any signs of stress corrosion cracking
	316	Citric	Microscopic evaluations showed that none of the samples
	310	Nitric	showed any signs of stress corrosion cracking

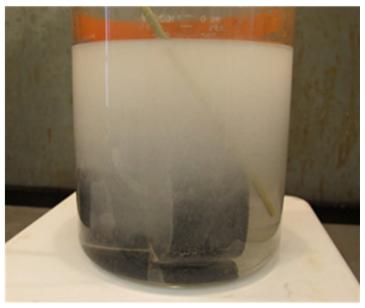
30

Fatigue

- 17-4PH alloy only
- Specimen with Continuous Radial Bends Between Ends; Subjected to a Constant Amplitude, Periodic Forcing Function in Air at Room Temperature
- Stress loads and cycles selected for each substrate were based on historical S-N Curve data in air at ambient temperature.



Fatigue


Testing On-going

Hydrogen Embrittlement

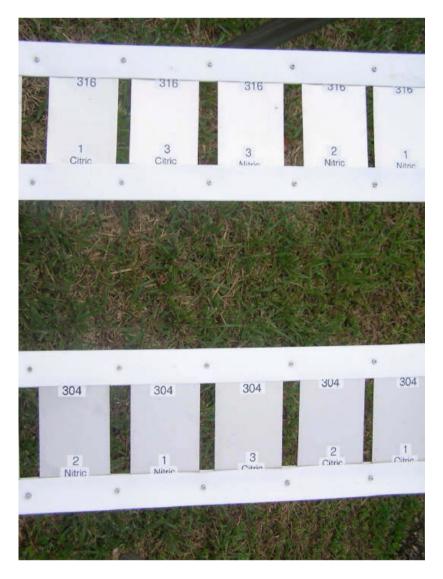
Cleaned ASTM F519-13 {Type 1D C-ring - AISI 4340 alloy steel} Test Specimens Prior to Passivation

Upon removal from the citric acid bath, it was noticed that the C-Rings were covered with a glossy black film (magnetite). This film remained after the C-Rings were rinsed with deionized water

4% citric acid solution at 82°C for 2 hours

Hydrogen Embrittlement

- 2.45 turns of the bolt were required to produce a 75% (to failure) loading. All C-Rings were compressed by 2.45 turns of the nut on the ¼" 28 steel bolt to produce the C-Rings for evaluation for potential cracking. All four samples were exposed under ambient condition in the laboratory.
- After 200 hours of exposure to ambient laboratory conditions, no fractures due to hydrogen embrittlement were visible on any sample {Type 1D C-ring AISI 4340 alloy steel}



Kourou Exposure Test Campaign

Test Panels @ ESA

Alloy	Passivation	Number of Panels
304	Nitric	3
	Citric	3
316	Nitric	3
	Citric	3

36

ESA Update

Next Steps

- Additional process optimization = only evaluated citric acid @ 4% concentration
 - It is suggested that the NASA Corrosion Technology Laboratory optimize the passivation process for the 17-4 samples
- Long term analysis of pitting of the samples at the NASA Beach Site
- Determine ESA needs and requirements for future testing

Summary

- Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
- The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel.
- The standard practice for protection of stainless steel is passivation.
- Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use.
- Citric acid removes iron from the surface more efficiently than nitric acid and therefore uses much lower concentrations reducing material costs.
- There are no toxic fumes created during the citric acid passivation process making it safer for workers.
- For a citric acid passivation concentration of 4%, the stainless steel alloys tested performed as well, and in some cases better than nitric acid passivated panels.
- NASA and ESA will collaborate on a joint project to evaluate citric acid passivation of stainless steel alloys.