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Abstract

The COxSwAIN project focuses on building an image and video compres-
sion scheme that can be implemented in a small or low-power satellite.
To do this, we used Compressive Sensing, where the compression is per-
formed by matrix multiplications on the satellite and reconstructed on
the ground. Our paper explains our methodology and demonstrates the
results of the scheme, being able to achieve high quality image compres-
sion that is robust to noise and corruption.

1 Introduction

1.1 Objectives

Goal #1: Develop a compression and reconstruction scheme
for images. This goal has been met. A set of MATLAB codes
have been developed to compress and reconstruct images. Separate
codes have been provided for the compression and reconstruction
of images.

Goal #2: Devlop a compression and reconstruction scheme
for video. This goal has been partially met. Though a set of
codes has been developed to perform video compression and re-
construction, compression in real-time was never explored. Real-
time reconstruction of video after compression was never tested
but would most likely not work since the reconstruction of images
typically takes a few minutes.

Goal #3: Explore and adjust quality of the scheme. This goal

has been met. Various factors have been studied in the image com-
pression and reconstruction, including di↵erent settings that can
be employed during the compression or reconstruction phases of
the scheme. These include the e↵ects of varying amounts of com-
pression, data types of the compressed images and video, di↵erent
settings used during reconstruction and the e↵ects of noise and
corruption on the reconstruction.

1.2 Overview

The COxSwAIN project is concerned with developing an image or video
compression scheme that could be implemented on a small or low-power
satellite. To carry this out, Compressive Sensing is used since the com-
pression can be performed by a set of matrix multiplications. Though the
reconstruction of the compressed image or video can be computationally
expensive, reconstruction can be performed on the ground.

The COxSwAIN project originally began as a hardware based ap-
proach, where the compression would be performed by multiplexing the
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image. As time went on, the project shifted to a software based ap-
proach with code being written in MATLAB. This paper outlines and
gives results demonstrating our approach. The paper is organized as
follows: a short background on Compressive Sensing and an explanation
of the reconstruction process is provided in Section 3. An overview of
the codes written to process image and video is provided in Section 4.
Lastly, results are provided in Section 5.

2 Background

2.1 A Short Introduction to Compressive Sensing and the
Compression of Signals

Compressive Sensing is a relatively young area of signal processing that
deals with the the compression of linearly modeled signals; for exam-
ple, images. Compressive Sensing performs compression by taking non-
adaptive linear measurements of a signal. One of the goals in Compres-
sive Sensing, and in our own research, is to find the minimum number of
measurements needed to perform a reconstruction that is (near) perfect.

Suppose that x 2 Rn is our signal of interest. We can compress x by
multiplying x by an m⇥ n matrix �, where m⌧ n. Letting

y = �x, (1)

y represents our compressed signal. Basic Linear Algebra tells us that
this system has infinitely many solutions. However, when � and x meet
certain conditions, then the original signal can be recovered.

In order to perform Compressive Sensing, we must choose a � matrix
that satisfies the Restricted Isometry Property (RIP). A matrix � is said
to satisfy the RIP of order k 2 N if there exists �k 2 (0, 1) such that

(1� �k)kxk2  k�xk2  (1 + �k)kxk2 (2)

for any x 2 Rn such that kxk0  k, where k · k0 denotes the sparsity, or
the number of non-zero entries in a vector.1 Intuitively, the RIP states
that � approximately preserves the distance between sparse vectors, the
same way that if � was an invertible matrix.

The � matrices used in our particular application consists of entries
drawn from a Normal distribution and then orthonormalized. These are
very common CS matrices and often appear in literature. It can be
shown that � satisfies the RIP and

m  Ck log
⇣n
k

⌘
, (3)

where C is an arbitrary constant, with high probability. Such a formula
is useful for showing that � makes a good compressive sensing matrix,

1It should be noted that k · k0 does not actually satisfy the properties of a norm,
and therefore should not be considered as one.
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using it to determine the value of m is not as clear. Therefore we have
relied heavily on empirical results to demonstrate the e↵ectiveness of our
approach when used for image compression.

For a more detailed explanation and proofs of the previous state-
ments, we direct the reader to [3]

In our own approach, instead of directly compressing an image, we
split the image into distinct square blocks and each block is compressed
individually using the same � matrix. This approach is known as Block-
based Compressive Sensing (BCS). Computationally, reconstruction of
our image in this compressed form becomes easier. In the following
subsection, we will outline how we reconstruct our image when we employ
BCS.

2.2 Image Reconstruction in a Compressive Sensing Frame-
work

In practice, it can be very di�cult to find the unique sparse solution to
(1). Instead, we relax the problem and instead try to solve the convex-
optimization problem

min
x

ky� �xk2 + kxk1. (4)

This formulation allows us to find a sparse solution to that is ”close” to
(1) instead of searching for it directly, making the computation feasible2.

The algorithm we employ for the reconstruction of compressed im-
ages is the Multiple Hypothesis Block-based Compressive Sensing with
Smooth Projected Landweber (MH-BCS-SPL) [4] [5] [6]. MH-BCS-SPL
works by employing a Smooth Projected Landweber iteration to gen-
erate an intial reconstruction, then Multi-Hypothesis (MH) predictions
are employed to improve the quality of the reconstruction. Thus, when
describing MH-BCS-SPL, we can break it up into two sections: The
SPL step and the MH step. Then a summary of the algorithm will be
provided.

2.2.1 Smooth Projected Landweber

When performing an SPL step, we first compute an initial guess to per-
form the reconstruction. We used x(0) = �Ty for an initial guess, though
in theory, another image could be used as an input. A Wiener filter is
employed to smooth the image and reduce the artifacts from blocking.
Then we compute

x̂(i) = x(i�1) + �T (y� �x(i�1)). (5)

The vector x̂(i) is then multiplied by a change of basis matrix  and
Bivariate Shrinkage [7] is applied to x̂(i) to promote a sparse solution

2Searching for a sparse solution is NP-Hard.
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in the  basis. Apply �1 to obtain x̃(i) and then compute

x(i) = x̃(i) + �T (y� �x̃(i)). (6)

We perform this iteration for kSPL steps or until Residual Means Square
of x(i+1) and x(i) is below the threshold ✏, where in practice kSPL = 200
and ✏ = 0.0001. The � value is used to control the Bivariate Shrinking
and will be discussed more in Section 4.1.

The algorithm is summarized as follows:

Algorithm 1 SPL
Require: y,�, ,�, ✏ , kSPL

1: x(0) = �Ty
2: for i = 1 to kSPL do
3: xW = Wiener(x(i�1))
4: x̂ = xW + �T (y� �xW )
5: ‘z =  x̂
6: z̄ = BivShr(z)
7: x̃ =  �1z̄
8: x̄ = x̃+ �T (y� �x̃).
9: if RMS(x̄,x(i�1))  ✏ then

10: Break
11: end if
12: x(i) = x̄
13: end for
14: return x̄

It is important to note here that we do not use the entire compressed
image y but instead withhold a set to perform Cross-Validation tech-
niques [8]. The holdout set that we use in our algorithm is the entries
or rows of y corresponding to the last three rows of � when multiply-
ing x. These entries will be used as a comparison when performing
Multi-Hypothesis Predictions to measure and improve the accuracy of
the reconstruction.

2.2.2 Multi-Hypothesis Predictions

The idea with performing a MH Prediction in our algorithm is we cull
information from within a block to improve the accuracy of the recon-
struction.

For each block of the initial reconstruction, provided by the BCS �
SPL(·) function, we will symmetrically extend each block of x̄ by w
pixels to create a search window that is of size (B + 2w) ⇥ (B + 2w)
pixels, denoted by ˆ̄xi Let ˆ̄xi,j a subblocks of ˆ̄xi, j = 1 . . . N , N being the
number of subblocks.

For every subblock ˆ̄xi,j , construct a column vector hj with B2 entries.
The entries of hj consists of the pixel values from x̄i,j , the remaining
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ones zero, and each entry of hj corresponds to a pixel of x̄i. Let Hi =
[h1, . . .hN ]. We will use Hi to compute

ŵi = min
w

kyi � �Hiwk22 + k�wk22, (7)

which can be found by computing

ŵi =
�
(�Hi)

T (�Hi) + �
T�

��1
(�Hi)

Tyi (8)

The matrix � is a diagonal matrix, with the nonzero entries found by
kyi � �Hjk22 and is an example of a Tikhonov Matrix. The intuition
behind this approach is that we do not want to assign as much weight
to subblocks that di↵er more significantly than others.

The algorithm is summarized as follows:

Algorithm 2 MH
Require: y,�, x̄, B, b, w
1: for i = 1 to M do
2: for j = 1 to N do
3: Construct Hj

4: end for
5: Construct�
6: ŵ =

�
(�Hi)T (�Hi) + �T�

��1
(�Hi)Tyi

7: end for
8: return ŵ.

As stated in Section 3.2.1, we have a holdout set that is used to
measure the performance. We will denote the sets we used for the recon-
struction and the holdout will be denoted by� R and� H respectively.
Therefore � = [�R;�H ]. The algorithm will be summarized, and then
explained for ease of understanding.

Essentially, the algorithm begins by computing an initial reconstruc-
tion with the SPL function. Then we perform Multi-Hypothesis Predic-
tions and residual reconstructions using SPL are performed to further
improve the quality of the reconstruction. When performing the MH
predictions, we set b = B

2 and w = 5. Structural Similarity (SSIM) [9] is
used to measure the similarity of the current and previous reconstructed
images, though in theory a measure such as RMS could be used instead.
A residual is taken of the reconstructed image compressed by� H and
yH . The intuition behind this is that if the reconstructed image using
�R is close to the original image, then the R(i) value should be relatively
small. If R(i) (as a function of i) begins to decrease and the reconstructed
image begins to converge to its solution, then we can increase the size of
the search window and subblock size to the actual block size, and more
iterations are performed. Increasing the subblock size is performed so
that the solution does not introduce any block artifacts, thus the search
window must be increased in proportion. If R(i) begins to increase when
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Algorithm 3 MH-BCS-SPL
Require: y,�, B, b, ,�, ✏ ,⌧, kSPL, kMH

x(0) = SPL(yR,�R, ,�, ✏ , kSPL)
for i = 1 to kMH do

x̃ = MH(yR,�R,x
(i�1), B, b)

x̂ = x̃+ SPL(yR � �Rx̃,�R, ,�, ✏ , kSPL)
s(i) = SSIM(x̂,x(i�1))
R(i) = kyH � �H x̂k2
if b < B then

if R(i) < R(i�1) and |s(i) � s(i�1)| < ⌧ then
b B
w  2⇥ w

end if
end if
if R(i) > R(i�1) and B = b then

Break
end if
x(i) = x̂

end for
return x̂

B = b, then this is an indicator that the algorithm may be diverging, so
the algorithm is terminated.

3 Image and Video Processing

3.1 Image Code

The image code begins by inputting an image. The first step is to divide
the image into blocks. So that our code can accept images of multiple
sizes, we compute the block size by taking the greatest common denom-
inator of the width and height of the image in pixels.

To perform the compression, a � matrix must be generated. First,
the size of � must be chosen. If � is an m ⇥ n matrix, n is chosen
based on the blocksize. So if the size of a block is B ⇥ B, then n = B2.
To determine m, we choose a number s such that 0 < s < 1 and set
m = sn.3 We refer to the value s as the subrate. Since s = m

n , the
subrate can be thought of the number of measurements taken relative to
the size of the image, and thus can act as a measure of compression. We
generate � by creating an n⇥n matrix consisting of entries drawn from
a Normal Distribution, orthonormalizing it and choosing m rows of the
matrix. We then multiply our image x by � to compress our image. The
compressed image y may then be truncated from entries consisting of
double precision floats to single-precision floats or 16-bit integers. In the

3Obviously we will round the value of sn and will be greater than zero.
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results section, we analyze the e↵ects of using di↵erent these di↵erent
data types on the quality of reconstruction.

After the image is compressed, we can invoke the MH-BCS-SPL al-
gorithm to reconstruct our image (see Section 3.2 for the overview of
this). As stated previously, we perform the reconstruction using a Dual
Discrete Wavelet Transform (DDWT). However, the user can invoke ad-
ditional arguments when running the function to use di↵erent transforms.
These include the Discrete Wavelet Transform, Discrete Cosine Trans-
form, Hadamard Transform, and option to not use a basis at all (so the
Bivariate Shrinkage step is skipped). The level of Bivariate Shrinkage
can be controlled as well by specifying the � value that is used. If the
user does not specify, then a default value of � = 6 is used. Since the
compression and reconstruction are independent of each other, the user
could in theory use all transforms and settings until one is found that
gives optimal results.

In the case that we have a color image that is an RGB or CMYK, we
simply take each color channel and treat it separately as an individual
image. After reconstructing each color channel, the channels are simply
combined back to obtain our entire reconstructed image.

3.2 Video Code

When processing video, the video can be split into a sequence of frames.
Thus, we simply perform the compression on each frame individually,
simply applying our code to process images repeatedly. Each compressed
frame is not saved however; instead we take save a set of frames as key
frames. For each key frame, the following frames, until another key frame
is reached, are saved as residuals between it and the sets key frame. For
example, if we save every 10th frame as a key frame in a set of frames
{y1, . . .yt}, then for every i, i = 1, . . . t, if i 6⌘ 0(mod10), then yi is
saved as y⇤

i = yi�i⇤ � yi, where i⇤ = i(mod 10). In our own algorithm,
we simply save the first frame as the only key frame, and the remainder
we save as residuals.

There are two advantages to this approach. The first is that resulting
set of compressed frames will be much more compressible since many of
the coe�cients will be zero or close to zero. The other advantage is
speeding up the video reconstruction since we can simply reconstruct
the residuals and add it back to the reconstructed key frame. Since
many of the entries of would be zero, the MH-BCS-SPL algorithm can
process them quickly.
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4 Results

4.1 Results: Basic

In this section, basic results will be reviewed and discussed. A variety
of images were tested, including high definition images, Infrared images,
as well as gray scale images. When the image is compressed, we can
save the compressed image using di↵erent precisions. Our results will
show the results for the compressed image in double precision, single
precision and 16-bit integers. The images displayed in the section will
be the original images and the reconstructed image where the compressed
image is 16-bit integers. All images were compressed using a .1 subrate
and reconstructed with a DDWT basis and � = 6.

Figure 1. The Land image shown in Figure 1 is a color image of size
1024⇥ 1024.

Figure 2. The Forest image shown in Figure 2 is a color image of size
400⇥ 600.

8



Figure 3. The Bubbles image shown in Figure 3 is a color image of size
1024⇥ 1280.

Figure 4. The Sail image shown in Figure 4 is an Infrared image of size
512⇥ 640.

Figure 5. The Peppers image shown is a greyscale image of size 512⇥512.

Measure Land Forest Bubbles Sail Peppers

Double CR .7969 .8000 .7969 .7969 .7969
Double PSNR 21.7042 21.0017 43.9455 16.2068 30.2580
Single CR .3984 .4000 .3984 .3984 .3984
Single PSNR 21.7042 21.0017 43.9455 16.2068 30.2580
Int16 CR .1992 .2000 .1992 .1992 .1992
Int16 PSNR 21.7038 21.0083 43.8832 16.2847 30.2559
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Typically, there are features present in images that lend itself to
Compressive Sensing. Images with fewer areas of high-contrast will have
better reconstructions. This however is to be expected since the re-
construction is sparse within a Wavelet domain, thus edges are usually
smoothed. The Land image is a good example of this, but this e↵ect
is especially present in the Sail picture, especially on the waves in the
image. On the other hand, Bubbles is a smooth image, thus the recon-
struction has especially good results.

One of the features that lends itself well to reconstruction is larger
images will typically reconstruct better than smaller ones. This can
already be seen by some of the results here, but in our own tests, larger
images will always have better PSNR scores as well as less smoothing
along the edges. Very small images (e.g. 64⇥ 64) will typically collapse
under noise or have strange artifacts (an example of such artifacts will
be seen when di↵erent bases are used to reconstruct images).

Unfortunately, our algorithm does not beat JPEG in terms of com-
pression. To achieve image compressions that are comparable to JPEG
requires to use less compression, thus JPEG easily outshines our own
method. However, the following subsections will outline the advantage
of our method over JPEG as well as results against MPEG video com-
pression which our method is superior to in terms of compression.

4.2 Results: Robustness Under Noise and Corruption

In this section, we will examine the reconstruction process in the presence
of noise. There are two cases of noise and corruption that we are con-
cerned with, noise and corruption before compression and after. Again,
the compressed images were saved as 16-bit integers and reconstructed
using a DDWT basis and � = 6.

4.2.1 Gaussian Noise

Gaussian noise in the original or compressed image is created by adding
a number drawn from a Normal Distribution to the matrix.

Original Image Original Image with Noise Reconstructed Image-Integer 16

Figure 6. Gaussian Noise Before Compression.
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Figure 7. Gaussian Noise After Compression.

4.2.2 Corruption

This subsection studies the e↵ects of corruption on the reconstruction
process of images. The same settings during the reconstruction used in
the previous section are used in this section as well.

Figure 8. The corruption present in this reconstruction is when a random
entry in the compressed image matrix is set to zero.

Figure 9. The corruption present in this reconstruction is that a block
of the compressed image has been set to all zeroes.
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Original Image Original Image with Noise Reconstructed Image-Integer 16

Figure 10. The corruption present in this image is that 5% of the pixels
in the image have been randomly chosen and set to zero.

Figure 11. The corruption present in this image is that 5% of the entries
of the compressed image have been randomly chosen and set to zero.

4.3 Application of Di↵erent Bases

Additional experiments were performed with the reconstruction employ-
ing di↵erent bases to perform the thresholding in. The basis used will
promote a sparse solution in whatever basis we perform the threshold-
ing in (which is necessary to perform the reconstruction). We employed
five di↵erent options: Dual-Discrete Wavelet Transform (DDWT), Dis-
crete Wavelet Transform (DWT), Discrete Cosine Transform, Hadamard
Transform and no thresholding at all, which we will refer to as the Stan-
dard Basis option. The first three have been used in Image Processing
for many years and images are often sparse or compressible when using
one of these transforms. The other two were a result of our curiosity; the
Hadamard Transform is just a series of high-pass filters and thus very
di↵erent from the wavelet transforms while the lack of thresholding was
used to test the significance of the thresholding in the reconstruction
process. Another interest was to see if any improvement could be made
on the sharp edges of a reconstructed image, which are often distorted
or smoothed under the reconstruction process. A Canny Filter was used
to display the edges of the image. Below the figures is a table with the
PSNR scores for each.

The PSNR scores of the Canny Filter should be taken with a grain
of salt however. The PSNR score can vary wildly by deciding how to
represent the white pixels. In our case, we decided, to set them to a
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Figure 12. Dual-Discrete Wavelet Transform

Figure 13. Dual-Discrete Wavelet Transform with the Canny Filter

Figure 14. Discrete Wavelet Transform
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Figure 15. Discrete Wavelet Transform with the Canny Filter

Figure 16. Discrete Cosine Transform

Figure 17. Discrete Cosine Transform with the Canny Filter

Figure 18. Hadamard Transform
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Figure 19. Hadamard Transform with the Canny Filter

Figure 20. Standard Basis

Figure 21. Standard Basis with the Canny Filter

Measure DDWT DWT DCT Had SB

Reconstructed 29.6334 29.6435 29.7554 28.7966 29.5982
Canny 11.1114 11.0633 11.2189 10.7481 11.1164
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Greyscale value of 255. Measuring the di↵erence in edges is a di�cult
problem in Image Processing and we decided to take the simplest solution
and the PSNR scores to compare the images against each other.

4.4 Video Results

It is very di�cult to quantify the quality of a reconstructed video. One
could do a frame-by-frame comparison between the original and recon-
structed videos, similar to what was done with images. However, a
spreadsheet of PSNR values does little to display the quality of a recon-
structed video. It is worth mentioning however that by reconstructing
the residuals of the compressed frame instead of the entire compressed
frame speeds up the process significantly and has little to no e↵ect on
the quality of the reconstruction.

The amount of compression performed is one thing that is easy to
quantify and can be easily compared against is the size of the compressed
video using MPEG24 and the size using our algorithm. A small AVI video
file consisting of thirty-seven frames and a file size of 298.5 kilobytes was
chosen and compressed using the two competing methods. The MPEG2
version of the video had a file size of 79.9 kilobytes and a compression
ratio of about 27%. Our algorithm compressed the video to about 52.3
kilobytes when saved as a .mat file and achived a compression ratio of
about 18%.

5 Conclusion

Matalb was used to create two separate codes to deal with image and
video compression and reconstruction. The layout of the image and
video code were discussed, as well as the results. The basic results show
a variety of images. This was done to show how the code can handle
and process everything from small to large images, as well as color and
grayscale. In the reconstructions, di↵erent features can be seen, such as
smoothing e↵ects. When there are areas of high contrast or very fine
detail, some artifacts can be seen. In the test results for robustness,
a single image was used to compare and contrast various tests. Noise
was added before and after compression, as well as flipping bits in the
compressed image. These tests all showed that the code is resilient to
missing data, and can still reconstruct the remainder of an image if a
bit gets flipped. Di↵erent basis were also tested to see if they would
work more e�ciently for various types of images. Overall, it can be seen
that the compression code and solver work very well in conjunction with
each other. The reconstructions are all high quality with low amounts
of artifacts.

4To perform the MPEG2 compression, we used the website http://video.online-

convert.com/convert-to-mpeg-2.
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6 Future Works

In the future, we would like to continue to improve the results on the
reconstruction process, in particular, the video reconstructions. There
are many techniques that involve taking advantage of structure between
frames. Very little of this was used in our own method, and would be
worth incorporating. We would also like to find new ways to measure
the quality of the reconstructions. Though there are techniques such
as SSIM or Entropy, more local measurements to measure the amount
of blur or discoloring would be worth exploring as well. We would also
like to perform more analysis in the compressed space and work on ways
to extract specific pieces of information out of edges such as edges or
regions of certain color. Lastly, we would like to extend this method to
other forms of information such as audio data or data from sensors.

References

1. C. Chen, E. W. Tramel, and J. E. Fowler, Compressed-Sensing Recov-

ery of Images and Video Using Multihypothesis Predictions, in Pro-
ceedings of the 45th Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, November 2011, pp. 1193-1198.

2. K. Dabov, A. Foi, V. Katkovnic and K. Egiazarian, Image Denoising

by Sparse 3D Transform Collaborative Filtering,IEEE Transactions of
Image Processing, Vol. 16, No.8, Aug. 2007.

3. Richard Baraniuk, Mark A. Davenport, Marco F. Duarte, Chinmay
Hegde, Jason Laska, Mona Sheikh, Wotao Yin, An Introduction to

Compressive Sensing, Connexions, Rice University, Houston, Texas,
Online: < http : //cnx.org/content/col11133/1.5/ >.

4. S. Mun and J. E. Fowler, Block Compressed Sensing of Images Using

Directional Transforms, Proceedings of the International Conference
on Image Processing, Cairo, Egypt, November 2009, pp. 3021-3024.

5. S. Mun and J. E. Fowler, Residual Reconstruction for Block-Based

Compressed Sensing of Video, Proceedings of the IEEE Data Com-
pression Conference, J. A. Storer and M. W. Marcellin, Eds., Snow-
bird, UT, March 2011, pp. 183-192.

6. C. Chen, E. W. Tramel, and J. E. Fowler, Compressed-Sensing Re-

covery of Images and Video Using Multihypothesis Predictions, Pro-
ceedings of the 45th Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, November 2011, pp. 1193-1198.

7. J. Prades-Nebot, Y. Ma, and T. Huang, Distributed video coding using

compressive sampling, in Proceedings of the Picture Coding Sympo-
sium, Chicago, IL, May, 2009.

17



8. . Ward, Compressed sensing with cross validation, IEEE Transac-
tions on Information Theory , vol. 55, no. 11, pp. 57735782, December
2009.

9. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image qual-

ity assessment: From error visibility to structural similarity, IEEE
Transactions on Image Processing , vol. 13, no. 4, pp. 600612, April
2004

18



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2.  REPORT TYPE 

Contractor Report
 4.  TITLE AND SUBTITLE

COxSwAIN: Compressive Sensing for Advanced Imaging and Navigation  

5a. CONTRACT NUMBER

NNX13AR50A

 6.  AUTHOR(S)

Kurwitz, Richard; Pulley, Marina; LaFerney, Nathan; Munoz Carlos

 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

 NASA Langley Research Center                     
Hampton, Virginia 23681                                                                                                 

 9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546-0001

 8. PERFORMING ORGANIZATION
     REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Final Report  

Langley Technical Monitor:Michael D. Vanek

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified 
Subject Category  59
Availability:   NASA STI Program (757) 864-9658

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email:  help@sti.nasa.gov)

14. ABSTRACT

The COxSwAIN project focuses on building an image and video compres-sion scheme that can be implemented in a small or 
low-power satellite. To do this, we used Compressive Sensing, where the compression is per-formed by matrix multiplications 
on the satellite and reconstructed on the ground. Our paper explains our methodology and demonstrates the results of the 
scheme, being able to achieve high quality image compres-sion that is robust to noise and corruption.  

15. SUBJECT TERMS

Image compression

18. NUMBER
      OF 
      PAGES

23
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

a.  REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF 
      ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3.  DATES COVERED (From - To)

 09/2014 - 09/2015

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

579853.04.02.08.02 

11. SPONSOR/MONITOR'S REPORT
      NUMBER(S)

NASA/CR-2015-219000

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY)

12 - 201501-




