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PERFORMANCE CHARACTERIZATION OF A LANDMARK
MEASUREMENT SYSTEM FOR ARRM TERRAIN RELATIVE

NAVIGATION

Michael A. Shoemaker∗, Cinnamon Wright†, Andrew J. Liounis ‡, Kenneth M.
Getzandanner†, John M. Van Eepoel §, and Keith D. DeWeese§

This paper describes the landmark measurement system being developed for ter-
rain relative navigation on NASA’s Asteroid Redirect Robotic Mission (ARRM),
and the results of a performance characterization study given realistic navigational
and model errors. The system is called Retina, and is derived from the stereopho-
toclinometry methods widely used on other small-body missions. The system is
simulated using synthetic imagery of the asteroid surface and discussion is given
on various algorithmic design choices. Unlike other missions, ARRM’s Retina is
the first planned autonomous use of these methods during the close-proximity and
descent phase of the mission.

INTRODUCTION

NASA’s Asteroid Redirect Robotic Mission (ARRM) is the robotic mission to visit an asteroid
and retrieve a boulder from its surface as a precursor to the manned Asteroid Retrieval Mission
(ARM).1, 2 The target launch date for ARRM is in January 2021, and the current asteroid target is
2008 EV5. After the spacecraft begins operations in the vicinity of the asteroid, the characterization
phase will refine the shape, spin, and gravity models as well as obtain high resolution imagery of the
surface. Two descent and boulder collection dry runs will be performed prior to the actual descent
to the surface of the asteroid. After the boulder is captured the spacecraft will perform an ascent
maneuver, drift to a safe distance away, then insert into a halo orbit along the vbar of the asteroid for
a period of time to perform a gravity tractor demonstration before returning the boulder to cislunar
space for later exploration by the ARM crewed mission.

Both optical navigation and terrain-relative navigation (TRN) are important components in the
guidance, navigation, and control (GN&C) while the vehicle is near the asteroid. One of the most
critical phases of the mission is the descent from 50 m altitude to the surface of the asteroid. As
the vehicle descends closer to the surface, autonomous TRN is required to maintain the descent
trajectory to the target boulder. The spacecraft must be centered over the boulder with dispersions of
less than 50 cm (3-σ). Moreover, the navigation must be autonomous because of the communication
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light-time delays. This autonomous TRN is partially achieved with a system to match observed
landmarks with onboard terrain maps. Retina is a tool being developed at NASA Goddard Space
Flight Center to make line-of-sight (LOS) measurements to predetermined landmarks on the surface
of the asteroid. Retina is derived from the stereophotoclinometry (SPC) methods developed by
Gaskell,3 which have a rich heritage on several planetary and small-body missions such as Voyager’s
exploration of Io,4 NEAR Shoemaker,5 Hayabusa,6 Rosetta,7, 8 Dawn,9, 10 and others. Reference 11
gives additional details of the Retina design and ARRM mission.

This paper characterizes the performance of these SPC-derived landmark template matching al-
gorithms when subjected to a variety of navigational and model error sources that are important
during the vehicle’s descent to the surface. This study is performed as part of an effort to develop
requirements for the onboard GN&C hardware and software, and to validate assumptions (e.g.,
measurement noise statistics) that are being used to develop the descent GN&C concept of oper-
ations. Furthermore, in the process of evaluating the performance of this landmark measurement
system, we have developed several improvements to the original methodology that will eventually
be incorporated into the Retina flight software version of this system.

SPC is the process of estimating terrain slopes and surface brightness (i.e., albedo) from images.
More specifically, at a given point on the surface of the body, three parameters are solved for: the
slope in two directions and the albedo. Once the slopes are computed, they can be integrated to
give the terrain heights, resulting in a digital elevation map (DEM) of the planetary or small-body
surface. Additional data such as limb measurements are used to constrain the slope integrations.
SPC is accomplished using a set of images; for a given surface point, the SPC solution requires at
least three images of varying geometry and lighting in which the point appears, but in practice many
more images (10s to 100s) are used to solve for the slopes and albedo in a least-squares sense.

SPC requires knowledge of the spacecraft and camera state, hence it is not a simultaneous local-
ization and mapping method. Instead, SPC is usually performed iteratively in conjunction with a
ground-based navigation process, i.e., as the vehicle slowly approaches the target body, the ground-
based navigation will estimate the target-relative navigation state, which is then fed into SPC to
solve for a DEM of a certain spatial resolution. Once the DEM is available from SPC, an image
registration process called “autoregister” is performed on the ground to compare navigation images
with the pre-computed DEM data to obtain LOS measurements to landmarks within the DEM. As
these terrain-relative LOS measurements become available, they can be fed into the navigation sys-
tem to further refine the spacecraft state estimate, and the cycle repeats as the spacecraft approaches
the body and higher-resolution images are obtained. The autoregister process is analogous to the
registration performed in other applications such as processing of geospatial remote sensing data,
i.e., the alignment (or registering) of collected imagery with a DEM on the Earth.12 In the context
of SPC and autoregister, the LOS measurement to a specified landmark is generated by solving for
the shift that best aligns a collected image of a landmark with its DEM. In other words, the DEM is
assumed to be known to the navigation system, and collected imagery is compared with the DEM
to produce LOS measurements to landmarks. Note that for the above-mentioned missions that have
used SPC and autoregister in the past, both of these processes have been performed on the ground.

The ARRM concept of operations (conops) assumes a similar strategy for SPC to be performed on
the ground, but one innovation is the planned application of the autoregister functionality onboard
the vehicle. We are denoting this planned flight SW system for landmark measurements as Retina;
the focus of this paper is a simulation of the autoregister-derived algorithms that will lead to Retina.
JPL is separately incorporating the autoregister functionality for landmark-based navigation into
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the AutoNAV flight SW system for onboard optical GN&C.13 This version of autoregister, called
OBIRON (Onboard Image Registration for Optical Navigation), was tested on the ground using both
Hayabusa6, 13, 14 and Dawn15 imagery. In the case of Hayabusa, imagery of the descent from 740 to
57 m range to the surface was used for testing.6 Reference 16 describes offline testing of OBIRON
using aerial images from the Death Valley and Nevada Test Site in support of the Autonomous
Landing and Hazard Avoidance Technology project with applications for a lunar landing. The
planned ARRM conops for Retina is potentially the first time this SPC and autoregister functionality
will be performed close to the surface of a small-body; the focus of the present paper is the range
from 50 m from the surface.

DEFINITIONS AND TERMINOLOGY

It is useful to first define some terminology and variables used in the SPC and landmark template
matching process before describing the overall conops flow. The reference frame Fb is the target
asteroid’s body-fixed frame (see Figure 1). The asteroid surface map is divided into a series of
maplets that tile the surface (with partial overlaps allowed). The SPC literature sometimes refers to
maplets as “L-maps” as well.3 Below is a list of some of the properties of a maplet, all of which are
defined in the maplet creation process of SPC:

• Landmark – the center (origin) of a given maplet is denoted as a landmark, with a position
vector rlm relative to the target body. Note that the landmark itself does not have to be a
distinguishing feature, such as a boulder or crater; it is the surrounding maplet terrain’s height
and albedo that form our required image templates. In other words, the maplet terrain itself
must have a certain amount of variation.

• Maplet Frame – the local coordinate frame centered on the landmark, Fm, where the z-axis
points towards zenith. The orientation of Fm relative to Fb is known.

• Maplet Grid Resolution and Scale – the number of grid elements that define the maplet (i.e.,
N × N ), and the scale of each maplet grid element (i.e., meters per element). Note that the
term “maplet pixel” is sometimes used as well to describe a maplet grid element, but can
cause confusion with image pixels.

• Maplet Space Coordinate - the cartesian position r = (x, y, z) that describes a point in the
maplet Fm.

• Height – an N × N matrix of height values that is a function z = z(x, y) of planar grid
coordinates in Fm.

• Relative Albedo– an N × N matrix of albedo values, also a function a = a(x, y) of maplet
planar grid coordinates in Fm.

The albedo contained in the maplet is not an absolute albedo; it is a relative albedo because it is
a description of a given maplet element’s surface material brightness relative to that of all other
elements in that maplet. For example, if points A and B in a maplet have a(xA, yA) = 1 and
a(xB, yB) = 2, then point B is twice as bright as point A (assuming they have equal slopes and
Sun-observer geometry). Hence, the relative albedo is only meaningful when used with the assumed
illumination model, discussed below. In the SPC maplet construction process, the relative albedo is
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solved on a maplet-by-maplet basis; the relative albedo alone cannot be compared across maplets
as a description of the inherent surface brightness.

Figure 2 shows an example of the height and relative albedo stored in one of the maplets used
in this study, where the number “Bxxxxx” is an identifier for this set of maplets. Here we use
N = 99, as is common in other SPC applications. Larger maplets (i.e., larger values of N ) are
possible, but the number of computations increases with maplet size, which is a concern for a flight
SW application. The process for generating the synthetic maplets used in this study is described
later.
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Figure 1: Illustration of reference frames and vectors for landmark measurements.
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Figure 2: Example height and relative albedo stored in a maplet, from B02246.
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Transformation from Maplet Space to Image Space

Figure 1 shows the vector relationship

rlm + r− rsc = ρ (1)

where rsc is the spacecraft position vector relative to the Fb origin, and ρ is the position vector of
a surface point in the maplet relative to the camera focal point centered on the camera frame Fc.
Note that in the remainder of this study, we ignore the offset of the camera relative to the spacecraft
body center. Also, we ignore errors in knowledge of the camera position and orientation relative
to the spacecraft, and in essence treat the spacecraft as consisting of nothing but the camera. The
LOS vector to a surface point is then ρ̂ = ρ/||ρ||. Considering a virtual image plane in front of
the focal point, then the point of intersection between ρ̂ and this plane is described by image space
coordinates (s, l), which are the (sample,line) coordinates in the image∗.

The optical model follows Reference 17. The nonlinear measurement model that describes the
(s, l) measurements to a surface point r = (x, y, z) as a function of the spacecraft pose x (i.e.,
position and attitude), modeled landmark position rlm, and vector of camera model parameters c is
denoted [

s
l

]
= h(x, rlm, c) (2)

In other words, h() is the transformation that maps a point in maplet space to a point in image space.
The steps involved in Eq. 2 are as follows. The position vectors in Eq. 1 are initially expressed in
Fb,

rblm + rb − rbsc = ρb (3)

The vector ρb is then rotated into Fc using the assumed camera attitude knowledge between Fb and
Fc:

ρc = Rb→cρb (4)

The 2D gnomonic projection (i.e., pinhole camera model) gives the coordinates z =
[
zx zy

]T in
mm on the virtual image plane:

z =
f

ρc3

[
ρc1
ρc2

]
(5)

where f is the focal length and ρc =
[
ρc1 ρc2 ρc3

]T . A model for geometrical distortion (i.e.,
deviations from a simple pinhole camera optical model) is then applied:

z′ = z +

[
−zyr zxr

2 −zyr3 zxr
4 zxzy z2x

zxr zyr
2 zxr

3 zyr
4 z2y zxzy

]
ε (6)

where r = ||z||, and ε =
[
ε1 · · · ε6

]T are the parameters that describe the distortion due to
2nd-order radial distortion and tangential distortion. The coordinates on the distorted virtual image
plane z′ =

[
z′x z′y

]T
are still expressed in mm; the mapping to pixel coordinates (s, l) is achieved

with [
s
l

]
= K

[
z′

1

]
(7)

∗The (sample,line) measurements are synonymous with the (column,row) notation for describing the pixel coordinates
in a image.
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where the matrix

K =

[
Kx Kxy s0
Kyx Ky l0

]
(8)

contains the image pixel coordinates of the principle point (s0, l0) (i.e., where the camera boresight
intersects the image plane), the terms Kx and Ky convert from units of mm to pixels, and the terms
Kxy and Kyx apply a rotation. We can now define the vector of camera model parameters in Eq. 2
as c = (f, ε,K).

PROCESS OVERVIEW

This section describes the overall optical navigation process in conjunction with the TRN phase
of the mission (see Figure 3). The major components in the landmark template matching process
are described in the following subsections. This paper does not go into detail on the other elements
of the planned onboard GN&C process, such as the filter, controller, guidance algorithms, and state
propagation.

Figure 3: Flow chart of SPC, Retina, and optical GN&C processes.

The ground-based SPC functionality shown in Figure 3 is assumed to be nearly identical to the
system used in previous SPC missions, as discussed above in the introduction. One set of inputs to
the ground-based SPC is the narrow field-of-view (FOV) survey images taken from a higher map-
ping altitude. The outputs of the SPC process are the individual maplets. Furthermore, the ground
system will include a landmark down-selection algorithm responsible for taking the predicted space-
craft ephemeris and attitude pointing and choosing the appropriate L-maps to be uploaded to the
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vehicle.

The inputs to the landmark template matching process are: the maplets generated during the
ground-based SPC process, the predicted spacecraft state at the current time from the onboard
GN&C subsystem, and the current wide-FOV imagery from the onboard optical navigation cam-
era. The landmark template matching is usually performed in an iterative fashion, where an initial
guess of the landmark LOS vector is refined. For the initial iteration into the template matching
loop (i = 0), an initial estimate of the (s, l) measurement to the landmark is computed using the a
priori pose estimate x∗ and the model from Eq. 2:[

s
l

]
i=0

= h(x∗, rlm, c) (9)

Landmark Extraction from Image

In this step, the portion of the image that contains the maplet data is identified, and those image
pixels are transformed from image space into maplet space, i.e., the maplet data is extracted from
the image. The main steps for accomplishing the image extraction are as follows:

• Compute the Jacobian of h() with respect to r evaluated on (x∗, rlm, c) using finite differenc-
ing:

H =
∂h()

∂r

∣∣∣∣
(x∗,rlm,c)

(10)

• Loop over each point rk in maplet space, where k ∈ {1, · · · , N2}, and project that point into
image space (s, l) using the linearization[

s
l

]
k

=

[
s
l

]
i

+ Hrk (11)

• The image data must be interpolated at the projected point, because the projected point in
image space almost certainly will not fall exactly on an image pixel (recall Figure 1). This
image interpolation is nominally performed with bilinear interpolation.

• Iterate around the maplet point rk using a small search distance, and for each of these addi-
tional points in maplet space, repeat the above-mentioned projection and interpolation steps.
The purpose of this additional iteration is to perform local averaging of the computed bright-
ness.

• Loop over each point in the extracted image and normalize the brightness within the maxi-
mum detector thresholds. Denote the final extracted image intensity at maplet coordinate k
as Iext(k). See Figure 4a for an example of an extracted maplet image, where the color scale
denotes the normalized image intensity.

Predicted Maplet Rendering

The L-map data is illuminated using knowledge of the slope and albedo at each point, as well as
the sun direction and assumed spacecraft pose. This predicted brightness I at each point k in the
L-map is calculated using an illumination model that has been developed over the years for airless
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Figure 4: Left (a) example of extracted maplet image from L-map B02246, right (b) example of
predicted maplet image from L-map B02246.

planetary bodies. Let ŝ denote the sun direction unit vector in Fm, and let ê denote the emission
direction unit vector in Fm (i.e., the direction from the surface to the observer). Let the surface
normal vector at r in Fm be n̂. Then the incidence angle, emission angle, and phase angle are given
respectively with

i = cos−1(ŝ · n̂) (12)

e = cos−1(ê · n̂) (13)

α = cos−1(ŝ · ê) (14)

The function to calculate the predicted brightness at maplet coordinate rk is3

Ipred(k) = Λa(xk, yk)R(cos i, cos e, α) + Φ (15)

where Λ is an image scaling multiplier, a(xk, yk) is the relative albedo defined previously, Φ is a
positive background term that can be used when there is background or haze in an image (e.g., due to
ambient lighting on a planet containing an atmosphere16), and R is the so-called “Lunar-Lambert”
function defined as:18

R(cos i, cos e, α) = (1− L(α)) cos i+
L(α) cos i

cos i+ cos e
(16)

where the term L(α) is defined shortly. The Lunar-Lambert function is a combination of Lambert
and Lommel-Seeliger reflectance functions, and is a simple model of single and multiple scattering,
in which the scattering is isotropic. The term L(α) is a phase adjustment term to model limb-
darkening. Reference 19 empircally models L(α) by fitting lunar data to a 3rd order polynomial.
However, we follow the convention of Gaskell3 which does an additional fit using an exponential as
follows:

L(α) = exp(−α/60) (17)

where α is expressed in degrees. Note that the limb-darkening term L(α) is the only phase-
dependent term in the intensity calculation. The Lunar-Lambert function of Eq. 16 has been vali-
dated on powdery materials in the laboratory, as well as disk-integrated properties of asteroids and
natural satellites,18 not to mention the flight programs where SPC has been used in the past.

The steps for computing the predicted maplet brightness are as follows:
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• Given the current spacecraft state inFb, compute the following vectors inFm: sun unit vector
(ŝ), and unit vector from maplet center to camera (ê). Note that the simplification is made
where ê is assigned to be the same for all points in the maplet, and to take on the value from
the maplet origin.

• Because the maplet contains the height data and not the slope data, the slope must be com-
puted from the height. This is done by looping over each point in the maplet and computing
the slope in two directions with a finite differencing.

• Also in the loop over all points in the maplet, the illumination is calculated with Eq. 15. The
result is the predicted illuminated maplet in Fm.

The illumination model used for the predicted images for this version of the landmark template
matching does not realistically account for shadowing, i.e., a full-fledged ray tracing is not per-
formed. Instead, in the interest of computational speed, a maplet pixel is calculated as being dark
only if its incidence angle is greater than 90 degrees. This shadow modeling difference can be seen
by comparing Figures 4a and 4b. This approximation is a hold-over from the original SPC and
autoregister formulation, and its speed makes it desired for onboard image rendering. The impli-
cations of this modeling approach on the correlation step, as well as future enhancements to this
methodology, are discussed below.

Correlation and Peak Finding

This step attempts to solve for the translational shift in maplet space ∆ri = (∆x,∆y) that
maximizes the correlation between the predicted and extracted maplet images, where i is the cur-
rent iteration of the template matching loop. If the onboard maplets contained no model errors and
perfectly represented the true terrain, and if the camera model contained no errors, then only naviga-
tional offsets (i.e., differences between the true and assumed spacecraft pose) would be responsible
for non-zero values of ∆ri in this correlation step. By solving for the shift ∆ri using our a priori
knowledge of the spacecraft pose, we can adjust our a priori knowledge of the LOS vectors to the
landmarks.

Figure 5a is a simplified illustration of the process for correlating the predicted and extracted
maplets. In this simple example for easy visualization, the maplet has dimensions of 5 × 5 maplet
pixels, and the correlation search is performed over a 3 × 3 grid. The predicted maplet is depicted
in blue, the extracted maplet is depicted in yellow, and the overlapping regions are shown in green.
The correlator is looped over the maplet-space planar search dimensions (∆x,∆y), and for a given
value of overlap, a correlation metric is computed and stored in a matrix as shown. The correlation
metric currently used is simply a linear correlation coefficient (i.e. the Pearson product moment
coefficient):

ρ =

∑
IextIpred −

∑
Iext
∑
Ipred√[

M
∑
I2ext − (

∑
Iext)

2
] [
M
∑
I2pred −

(∑
Ipred

)2] (18)

where M is the length of both signals Iext and Ipred. The correlation coefficient ρ is defined from -1
(perfect inverse correlation) to 1 (perfect correlation).

Once the correlator loop has fully populated the correlation matrix, a peak correlation value is
found. The peak is found by selecting points on both sides of the max and finding the intersection
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Figure 5: Left (a) shows a simplified illustration of the process for populating the correlation matrix
ρ(∆x,∆y). Right (b) is an example of the ρmatrix using Ipred and Iext from our descent simulations.

of lines constructed from those points, where the slopes of the lines are computed from the corre-
lation matrix gradient. The solution ∆ri is the shift that maximizes the correlation coefficient. The
correlation search distances are controlled by the template matching loop iteration, e.g. ∆x = 5Li,
where Li in the current simulations begins at a max of 10 and decrements to 1. Hence, the search is
initially performed over a larger area in maplet space and should converge to a small area. Note that
the peak finding in the ρ matrix allows sub-maplet-pixel solutions for ∆ri. Figure 5b is an example
of the ρ correlation matrix using the predicted and extracted maplets (from an unperturbed case)
from our ARRM descent simulations, where the correlation matrix has dimensions of 11× 11.

It is important to note that the correlated images from the predicted and extracted maplets are
decomposed into a one-dimensional signal, hence all spatial information is lost, and the correla-
tion is performed on a pixel-by-pixel basis. Also, because the illumination model for the predicted
maplets is known to be deficient with regard to shadow calculations (as mentioned above), a pair
of image pixels from the predicted and extracted maplets is included in the correlation signal only
if both are greater than a near-zero threshold. In other words, the correlator is intentionally disre-
garding shadowed pixels in either image. Lastly, the linear correlation coefficient ρ is invariant to
linear transformations of one signal relative to the other; for example, the slight differences in the
normalized image intensities between Iext and Ipred apparent in the color scales in Figures 4a and 4b
do not affect ρ.

Image Space Transformation

Lastly, the landmark LOS shift measurements are transformed from maplet space into image
space, again using the a priori spacecraft state knowledge. Here, the linearized transformation is
used again: [

s
l

]
i+1

=

[
s
l

]
i

+ H∆ri (19)

If the template matching loop is done with all iterations i, then the final landmark LOS measure-
ments (s, l) can be fed into the onboard GN&C filter, otherwise the loop repeats.
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SIMULATION ENVIRONMENT

An in-house renderer called Geomod is used to model the 3D scene geometry, lighting models,
and ray tracing for synthesizing the “truth” images in our ARRM simulations. The ray tracer uses
Monte Carlo importance sampling to follow a large number of incoming light ray directions (back-
wards) from a pixelated detector grid, through a lens system, and into a scene. It is physically-based
on radiometric light transport, geometric optics, and statistically unbiased Monte Carlo integration.
Geomod has been used previously to support simulations of the Origins, Spectral Interpretation,
Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission.

For the purposes of this study, the wide-FOV navigation camera is baselined using similar pa-
rameters as the NAVCAM wide-FOV camera on OSIRIS-REx (see Table 1). From Table 1, the
principle point pixel coordinates are (s0, l0) = (1296.5, 972.5), and Kx = 454.54, Ky = −454.54,
and Kxy = Kyx = 0.

Table 1: Wide-FOV camera parameters used in this study

Parameter Value

Detector horizontal resolution 2592 pixels
Detector vertical resolution 1944 pixels
Focal length, f 7.68 mm
Detector pixel dimensions 2.2 × 2.2 microns
Camera horizontal FOV 40.7 deg
Camera vertical FOV 31.1 deg

There are two sets of maplets for the asteroid surface used in this study. The first is the “truth”
set used to render the synthetic images from Geomod, which has 3-mm resolution maplet pixels.
The onboard maplet set (i.e., the maplets we assume would be used onboard during the descent
from 50-m altitude, denoted with the “B” prefix) is derived from the truth set for the purposes of
this simulation∗, but is down-sampled and smoothed to a final maplet pixel resolution of 1-cm, with
N = 99. The down-sampling and smoothing from truth maplets to onboard maplets introduces
small systematic errors (e.g., on the order of a few cm in height).

The asteroid surface is simulated with a suite of FORTRAN algorithms provided by Gaskell,
which take as input an approximate shape model and applies a stochastic interpolation to add a re-
alistic distribution of surface boulder, craters, and accretion layer. Earlier examples of this method-
ology can be found in References 20 and 21. For example, the cratering distribution is based on
a power law relating the number of craters and their diameters, as observed in nature. The out-
put is a series of maplets at the desired resolution and scale. Gaskell5 shows an example of the
synthetic shape generation algorithms being applied to Bennu for the OSIRIS-REx mission. Fig-
ure 6 shows the synthesized asteroid surface within the FOV at 50 m altitude, with 12 landmarks
indicated, where the magenta squares indicate the size of each individual maplet. Note that each
maplet considered here is 1 m × 1 m, whereas the entire FOV at 50 m altitude covers an area on
the surface of approximately 28 m × 37 m. Figure 7 shows the extracted maplet images for each of
the 12 landmarks at 50 m altitude. The reference trajectory for the ARRM vehicle’s descent to the
surface is the same as that used in Reference 22. Note that our simulation of the landmark matching
algorithms in the present paper is not a dynamic simulation that uses the landmark measurements in

∗During actual operations, the onboard maplets come from the SPC process as described above, because obviously
the truth terrain is unknown.
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a closed loop; instead we simply use the vehicle’s asteroid-relative state a given time to render the
truth images and measure the landmarks.

PERFORMANCE CHARACTERIZATION

This section describes the results of running the landmark template matching algorithms when
subjected to imperfect knowledge of the spacecraft navigational state and model parameters (i.e.,
parameters affecting both the camera model and terrain model).

Perturbed cases at 50 m altitude

The nominal states and model parameters were perturbed at 50-m altitude from the surface as de-
scribed in Table 2. Each perturbation is zero-mean and normally distributed with the 1-σ standard
deviations shown. Most of the perturbation values in the table are realistic assumptions at this stage
of the preliminary design, with the exception of the spacecraft pose knowledge relative to the as-
teroid, as discussed below. The landmark template matching algorithms were simulated in a Monte
Carlo (MC) setting, with Latin Hypercube Sampling (LHS)23 of 500 samples per landmark. LHS
generally allows a more accurate representation of the desired probability density function compared
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Figure 6: Synthetic image of asteroid surface from Geomod at 50-m altitude, showing location of
the 12 landmarks used in the performance characterization.
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Figure 7: Extracted maplet images (Iext) for the 12 L-maps at 50-m altitude.

with MC for the same number of samples. LHS was chosen because the landmark image process-
ing algorithms are currently implemented in Matlab, hence a large number of MC samples require
a long computation time. The “truth” measurement (s, l)truth is defined as Eq. 2 evaluated on the
unperturbed values of (x, rlm, c), the “perturbed” (s, l)perturb is the result of the landmark template
matching algorithms when (x, rlm, c) are perturbed, and the resulting errors in the measurement as
a result of the perturbations are (s, l)err = (s, l)truth − (s, l)perturb. Note that the synthesized images
(simulated from the navigation camera) are not re-rendered for each perturbed sample due to the
long computational time required; rather we are perturbing our knowledge of the navigation state
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and model parameters for a single set of collected (i.e., synthesized) images. Additional fidelity
may be achieved in future simulations that also perturb the truth state (as well as rendered synthetic
imagery).

Table 2: Monte Carlo Simulation Parameters

Parameter or state to perturb 1-σ std applied

Asteroid-relative spacecraft position rsc, each component 0.1667 m
Asteroid-relative spacecraft attitude, each component 0.05 deg
Asteroid-relative landmark position rlm, each component 3.33 cm
Maplet terrain height z(x, y) 3.33 mm
Maplet terrain albedo a(x, y) 0.047
Camera model pixel skew Kyx 1× 10−5

Camera model principle coordinates (s0, l0) 0.1667 pixels
Camera model focal length f 0.004 mm
Camera model distortion coefficients ε (1× 10−5, 1× 10−7, 1× 10−5, 1× 10−5, 0, 0)
Asteroid-relative sun vector direction, RA and DEC 0.3 deg

The results of the LHS simulations are summarized in Table 3, and Figure 8 shows the distribution
in (s, l)err for each landmark. The first column in the table is the landmark ID number. The next
four columns are the means and 1-σ standard deviations of (s, l)error. The 6th column shows the
number of samples where a peak in the correlation matrix was not found, e.g., due to the peak being
on the edge of the search distance, or the correlation matrix not showing a clearly defined peak. The
7th column shows the number of samples where the peak correlation was found, but with a value
below a specified threshold of 0.3. The threshold level was determined based on experience in the
simulations, but this value is subject to change. The 8th column is the landmark template matching
success rate, meaning the fraction of those 500 samples that successfully had a peak correlation
value above the 0.3 threshold. The last column is the mean across the 500 samples of the max
correlation value ρ from the correlation matrix from each sample. The samples shown in Figure 8
correspond to those having a successfully located correlation peak. From these results, it is clear
that these 12 landmarks have a line error lerr mean close to zero, but a small bias of approximately
-0.1 pixels in the sample error serr. The error distributions shown in Figure 8 do not show any strong
non-Guassian behavior. The lerr 1-σ std is consistently larger than the corresponding statistic in serr,
but both are below approximately 0.1 image pixels.

The biggest influences on the size of the errors (s, l)err are the knowledge errors in spacecraft
pose, followed to a lesser extent by rlm, (s0, l0), and z(x, y). The majority of the failure cases in the
landmark template matching (i.e., the approximately 10% of the 500 samples for each landmark)
are due to the spacecraft pose knowledge errors projecting the extracted maplet imagery too far
off of the maplet terrain in maplet space. Recall from the discussion on the correlation in maplet
space, that the correlation is only performed on the overlapping portions of the two signals. As the
correlation signal size decreases, the quality of the linear correlation quickly degrades (especially
in the presence of noise). Considering the 1-σ values, the spacecraft position alone is 0.17 m and
the attitude is 0.05 deg; when these two act in the same direction (parallel to the asteroid surface)
the result is an offset in the boresight intersection with the asteroid surface of roughly 42 cm at
the 2-σ level. The max search distance used in the correlation loop for these tests is L = 10,
corresponding to a maplet space max search distance of 5L = 50 maplet pixels, or 50 cm. Hence,
when the spacecraft pose knowledge errors approach the 2-σ levels, the correlation algorithm begins
to approach its maplet space search distance limits when L = 10.
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Figure 8: Monte Carlo results from several landmarks at 50-m altitude, where the axes are (s, l)err
in units of image pixels.
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Table 3: Summary of Monte Carlo (LHS) Simulation Results at 50 m altitude.

L-map
ID

Sample
error
mean
[pix]

Line
error
mean
[pix]

Sample
error
std
[pix]

Line
error
std
[pix]

Num.
not
found

Num.
below
thresh.

Success
Rate

Mean
of max
ρ

B01980 -0.136 0.048 0.062 0.096 42 15 0.89 0.54
B02176 -0.163 0.053 0.028 0.066 23 25 0.90 0.54
B02246 -0.111 -0.027 0.041 0.082 31 18 0.90 0.58
B01585 -0.041 0.054 0.033 0.082 36 20 0.89 0.56
B01909 -0.049 0.081 0.043 0.085 36 15 0.90 0.55
B02235 -0.139 0.068 0.025 0.071 39 12 0.90 0.55
B02690 -0.052 -0.056 0.043 0.097 52 16 0.86 0.57
B02631 -0.107 -0.069 0.038 0.076 37 13 0.90 0.57
B02642 -0.117 0.007 0.058 0.113 46 15 0.88 0.58
B01926 -0.193 0.019 0.032 0.078 49 6 0.89 0.59
B01536 -0.208 0.118 0.037 0.083 35 19 0.89 0.58
B01595 -0.114 0.111 0.041 0.080 33 25 0.88 0.57

The descent GN&C conops currently assumes the spacecraft pose navigational errors to be ap-
proximately 0.5 m and 0.6 deg (3σ) in each component at 50 m altitude, based on a linear covari-
ance analysis assuming landmark measurements (s, l) with 1σ noise of 1 pixel.22 Thus, we have
shown that the achievable landmark measurement noise may be smaller, but we have also assumed
a smaller navigational error in attitude knowledge (recall Table 2). Thus, the current landmark
template matching algorithm and settings may be insufficient for accurately providing landmark
measurements with this level of spacecraft pose error, which requires further investigation. One
alternative is to increase the search distance L: the downside of this approach is the potential in-
crease in computational burden as a larger search area must be iterated in the correlator. Another
alternative is to increase the maplet template size (i.e., N ), which comes with its own increase in
computation burden because many of the calculation are performed on a pixel-by-pixel basis in the
maplet. We are exploring a new approach to solving this problem by performing the correlations in
image space, as opposed to maplet space, described below in the discussion on Retina.

Perturbed cases during descent below 50-m altitude

The above perturbed cases were repeated for three landmarks at 30-second intervals during the
descent, beginning at 50-m altitude and stopping before 25-m altitude. Figure 9 shows these results,
where the mean and 1-σ std from each 500-sample LHS run are shown as a box-and-whiskers plot.
The sample and line errors are shown in black and blue, respectively. Note that each run of the
landmark template matching algorithm at a given instant is independent, i.e., the (s, l) solution at
one time step is not used as an input to the next time step. Only three landmarks are shown here
because of the large number of samples required to run the LHS simulations at this 30-second
time step in Matlab. Figure 9 shows that the standard deviations do not increase greatly as the
spacecraft approaches the surface. The largest increase here is the sample error mean and std for
L-map B01980, which nearly double during the approach. Figure 7 shows that this landmark has
two large boulders, unlike L-maps B02176 and B02246, and the boulder shadows exist mostly along
the sample direction. One possible explanation for this error growth is mis-modeling of the boulder
shadows in the predicted image (as described after Eq. 17). Lastly, it is worth noting that neither the
landmark template matching success rate nor the max correlation value changed significantly over
the altitude ranges tested.
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Figure 9: Mean and 1-σ std results for (s, l)err for three landmarks at 30-second intervals during
descent from 50 to 25 m range.

FUTURE RETINA DEVELOPMENT

As discussed above, the maplet-space correlations that form the basis of the pre-existing land-
mark template matching algorithms are limited when the spacecraft pose knowledge errors result
in poor correlations or insufficient overlapping data. One approach we are taking with our Retina
fight software development is to instead project the maplet data into image-space and perform the
correlations there. A benefit of this approach is that a larger amount of image data is available in
the FOV as the correlation search distance is extended beyond the geometric limits of the maplet.
In other words, we are comparing the maplet data with additional regions in the image around the
assumed maplet, as opposed to maplet-space searches where large search distances can result in
very little overlapping data (or no overlapping data in the extreme). Recall from Figure 6 that each
maplet only occupies a fraction of the overall FOV. Hence, the Retina approach of correlating in
image space may be more robust to spacecraft pose knowledge errors, although it is possible that
the correlation search time could be large if the true landmark location in the image is much farther
than expected. Another philosophical difference between Retina’s image-space correlations and the
SPC-derived template matching in maplet-space is that Retina does not modify the processed sen-
sor data, and instead does the manipulations on the model-based maplet terrain data. Furthermore,
a more realistic ray-tracing method is used for shadow modeling than the simple incidence angle
check in the existing landmark template matching; this improved image predicting should allow
more surface data to be included in the correlations and improve accuracy. Figure 10 shows some
preliminary results of our new Retina algorithms for landmark template matching, under a similar
MC setup as described above at 50-m (with nearly identical perturbations to spacecraft navigational
states and model knowledge). It is clear that the mean errors are slightly improved and the stan-
dard deviations are somewhat larger; the big improvement is that these MC runs found 100% of
the landmarks, versus the approximately 90% success rate in the existing algorithms. Additional
information on planned Retina development can be found in Reference 11.

CONCLUSIONS

This work has demonstrated the SPC-derived landmark template matching algorithms during
part of the descent below 50-m altitude above a simulated asteroid surface. The algorithms were
shown to produce line-of-sight measurements to the specified landmarks with sufficient accuracy,
assuming a low level of navigational error in the spacecraft’s asteroid-relative pose. However, for
larger navigational errors, this work has illustrated some fundamental limitations in the maplet-space
correlations used in the existing landmark template matching algorithms. Preliminary results were
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presented on a different algorithmic approach, where terrain data is projected into image-space for
more robust correlation. This different approach to landmark template matching is being developed
as the Retina flight software for eventual onboard implementation.

Figure 10: Example Monte Carlo results from Retina, where column = sample and row = line.
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NOTATION

a maplet relative albedo
c vector of camera model parameters
ê emission direction unit vector
e emission angle
Fb asteroid body-fixed frame
Fc camera frame
Fm maplet frame
f camera focal length
H Jacobian of h()
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h() maplet-space to image-space transformation
Iext extracted image intensity
Ipred predicted image intensity

i (subscript) index of landmark matching loop
i incidence angle

K camera intrinsic matrix
Kx,Ky camera mm-to-pixel scaling terms

Kxy,Kyx camera image rotation terms
k (subscript) index of discrete point in maplet

L correlation search distance
L(α) limb-darkening phase adjustment term
M length of vectors for correlation
N number of maplet grid elements per side
n̂ surface normal direction unit vector
l line image coordinate, pixel
l0 line image coordinate of principle point, pixel

Rb→c rotation matrix from Fb to Fc

R Lunar-Lamber function
r position of point in maplet

rlm position of landmark
rsc position of spacecraft
∆r solve-for shift in maplet space
r magnitude of z
ŝ sun direction unit vector
s sample image coordinate, pixel
s0 sample image coordinate of principle point, pixel
x spacecraft pose

x, y cartesian coordinates within maplet
∆x,∆y cartesian components of ∆r

z virtual image plane coordinates
z′ distorted virtual image plane coordinates
z maplet height

zx, zy components of z
α phase angle
ε vector of camera distortion coefficients
Λ image scaling multiplier
ρ range vector from camera to surface point
ρ correlation value

ρ1, ρ2, ρ3 components of ρ
Φ positive background term
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