OSIRIS-REX ORBIT DETERMINATION COVARIANCE STUDIES AT BENNU

AAS 16-101 February 9, 2016

39TH ANNUAL AAS GUIDANCE & CONTROL CONFERENCE BRECKENRIDGE, CO FEB 5-10, 2016

P.G. ANTREASIAN, * M. MOREAU[†], C. JACKMAN, * K. WILLIAMS, * B. PAGE, * & J.M. LEONARD*

* KINETX, INC., SPACE NAVIGATION AND FLIGHT DYNAMICS PRACTICE, 21 W. EASY ST., STE 108, SIMI VALLEY, CA 93065 USA.
*NASA/GSFC CODE595, 8800 GREENBELT RD, GREENBELT, MD 20771, USA.

THE UNIVERSITY OF ARIZONA – NASA GODDARD SPACE FLIGHT CENTER – LOCKHEED MARTIN - KINETX

Origins Spectral Interpretation Resource Identification Security Regolith Explorer Mission

- Bennu (formally 1999 RQ36) is a primitive B-class, Near-Earth, carbonaceous (volatilerich) asteroid, a class of object never before visited by a spacecraft
- Its size, shape, and rotation state are known from extensive characterization by the Arecibo Planetary Radar System
 - About 500 m diameter, 4.3 hr rotation period, 436.6 day orbit of Sun, 350 K maximum surface temperature, 3% geometric albedo, micro-gravity environment
- Study of this **Potentially Hazardous Asteroid** is strategically important to NASA and Congress

ASTEROID BENNU – ONE OF THE SMALLEST SMALL BODIES EVER VISITED

- Bennu is one of the smallest objects ever visited:
 - Mean Diameter = 492 ± 20 meters (1-sigma uncertainty)
 - M = (7.8 ± 0.9) × 10¹⁰ kg (1-sigma uncertainty)
 - GM = μ = 5.2 (3-sigma uncertainty 3.4 to 7.0 m³/s²)
- OSIRIS-REx is operating in very close proximity to Bennu, to include contact with the surface:
 - Safe "home" orbit has 1 km radius
- Large a priori uncertainty in mass, shape/features, spin axis/rate/pole, albedo and surface properties

 Itokawa
 Bennu

 535 × 294 × 209 m
 492 m

 (3.51±0.105)×10¹⁰ kg
 (7.8 ± 0.9) x 10¹⁰ kg
 4.1×4

 39th Annual AAS Guidance & Control Conference Breckenridge, CO, Feb 5–10

SPACECRAFT OVERVIEW

NAVIGATION SENSORS

OPTICAL NAVIGATION PHASES STAR-BASED TO LANDMARKS

- Optical Navigation images are needed to determine spacecraft state errors to the required level of accuracy
- Differences between observed and modeled positions of target objects are used to update the spacecraft position & camera pointing

Approach

Target body is unresolved and appears against a background of stars

Transition

Target body is partially/fully resolved, stars are still visible

Proximity Ops

Target body surface fills the entire FOV, no stars or limbs visible

- Small perturbations result in large predictive errors in the S/C trajectory down-track position over relatively short periods
 - Small non-gravitational forces 1–10 nm/s²
 - From solar radiation pressure mis-modeling, S/C thermal radiation, asteroid IR and albedo
 - Small ΔV 's momentum desaturation maneuvers are a significant orbital perturbation
 - FDS analysis assumes residual ΔV from a desat is:
 - + < 0.5 mm/s (1 σ) every 3 days (CBE < 0.1 mm/s (1 σ))
 - or < 2 mm/s (1σ) every 10 days
- Science observations, maneuver designs require 10's of meters position accuracy
 - Navigation prediction errors are large relative to orbital radius
 - Requires precise characterization of the small forces to levels less than past planetary or small body missions
 - Also requires frequent late-update OD deliveries to support the rapid pace of maneuvers and observations
- TAG sequence requires down-track errors < 30 m (1σ)
 - This requires non-grav forces to be determined $\leq 3 \text{ nm/s}^2$
 - Assuming a late-update OD with a data cutoff of 24 hrs before Orbit departure

PROXOPS TIMELINE AT BENNU AND SCIENCE TEAM DELIVERIES TO FDS

Activity Name	Sept 18 Oct 18 No	v 18 Dec 18 Jar	1 19 Feb 19 Mar 19	Apr 19 May 19 Jun 19 Jul 19	Aug 19 Sept 19 Oct 19
	12 19 26 2 9 16 23 30 7 14 21 28 4	11 18 25 2 9 16 23 30 6 1	13 20 27 3 10 17 24 3 10 17 24	31 7 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28	3 4 11 18 25 1 8 15 22 29 6 13 20 2
Campaigns	Navigation Can	npaign		Collect & Stov	
ProxOps Phase	Approach	PS Orb-A B	Detailed Surve	TAG	
Events	AAMs 1-4	Enc 12/17/18	sertion 3/25/1 Radio Science G	Drbit-B Insertion 225-m, 525-m Recon Passes	Rehearsals TAG 10/12/19
Star-based OpNavs	8/day				
Digital Terrain Map Development (Shape Model)					
SPOC Deliveries to FDS	ape Model GTM075 & Global Topo M	ap 11/23/18 GTM075 & Tor 12/7/ PS Shape I 12/14/18	po Map Update OLA Nodel GTM0030 3/18/19	A_GTM_075 1 0-cm DTM, High Res DTMs o 5/15/19	f 12 sites
Landmark OpNavs			12/d	ay	
Asteroid Ephemeris Estimation		Transition t	o Landmarks		
Gravity Estimation	G	M est < 2% < 1%	GM < 0.1%	Est 4x4	
SPOC Deliveries to FDS			3/26/1	DS Gravity Field 9 Post-Radio Science Gravity Field update 4/17/19	
Pole, Wobble & Spin Estimation					
SPOC Deliveries to FDS		PS Pole, V 12/17/10 Orbit-	Vobble & Rotation State A update 3/20/19	update	
Sample Site Selection					
SPOC Deliveries to FDS			12 Intermediate Sample Site	Down select 4 sites 5/23/19 Final Site Select	ection
39th Annual AAS Guidance	e & Control Conference	ce Breckenrida	ue. CO. Feb 5–1	()	9

THERMAL MODEL ORBITAL POSITIONS

OSIRIS-REX

SPACECRAFT IR FORCES

* HGA Attitude: HGA (+X) at Earth, Sun in X-Z plane

PROXOPS FILTER STRATEGY

- Significant Filter Estimated Parameters
 - S/C epoch state
 - Solar Pressure
 - Bennu ephemeris, pole, prime meridian, spin, GM, 4x4 gravity field
 - 3-axis Stochastic non-grav. acceleration to account for small forces
 - (S/C IR, asteroid IR, albedo, SRP)(1-day batches, white noise)
 - Stochastic image pointing errors
 - (batched per image, white noise)
 - Maneuvers (direction, ΔV magnitude)
 - Desat ∆V's (every 3–10 days)
- Measurements
 - X-band Radio-metric Tracking:
 - 2-way Doppler 8 hrs / day
 - 2-way Range 4 hrs / day
 - Star-based, Landmark OpNavs
 - Star-based: up to 1 / day during Approach through Orbital-A
 - Landmark-based: 8-12 images / day, 1 image every 3-2 hrs
 - Total Landmarks placed equidistant (40 baseline / 100 CBE)

BENNU GM IMPROVEMENTS

DETAILED SURVEY - MID-LATITUDE OBSERVATIONS

Detailed Survey – Predicted S/C State Errors During Mid-Latitude Observations

Detailed Survey – Predicted S/C State Errors During Mid-Latitude Observations

DETAILED SURVEY - EQUATORIAL OBSERVATIONS

DETAILED SURVEY – PREDICTED S/C STATE ERRORS DURING EQUATORIAL OBSERVATIONS

DETAILED SURVEY – PREDICTED S/C STATE ERRORS DURING EQUATORIAL OBSERVATIONS

ORBITAL-B

ORBITAL-B - PREDICTED S/C TRANSVERSE ERRORS

Transverse Orbit Errors (1-sigma) in Orbit-B

Orbital-B – Predicted S/C State Errors⁺ (1 σ) No Desats

No Desat Errors in Predictions

Case	Desats in predict	Map Time	R (m)	T (m)	N (m)	DR (mm/s)	DT (mm/s)	DN (mm/s)	Downtrack Timing Error	Downtrack Pt Error (deg)	Crosstrack Pt Error (deg)
At DCO										using mean motion*time	
Baseline	None	10-Oct-19 12:00	0.77	0.50	0.59	0.07	0.03	0.01	.1 min	0.0	0.0
CBE	None	10-Oct-19 12:00	0.37	0.26	0.18	0.03	0.01	0.00	.1 min	0.0	0.0
Predict 1 da	ay										
Baseline	None	11-Oct-19 12:00	4.22	19.15	1.28	1.42	0.17	0.01	4.4 min	1.1	0.1
CBE	None	11-Oct-19 12:00	1.56	8.48	1.26	0.62	0.06	0.01	2. min	0.5	0.1
Predict 2 da	ays										
Baseline	None	12-Oct-19 12:00	8.27	77.97	1.29	5.64	0.31	0.04	18. min	4.5	0.1
CBE	None	12-Oct-19 12:00	2.84	28.49	1.27	2.06	0.11	0.01	6.6 min	1.6	0.1
Predict 1 w	eek										
Baseline	None	17-Oct-19 12:00	12.99	656.39	1.26	47.38	0.70	0.30	2.53 hr	37.6	0.1
CBE	None	17-Oct-19 12:00	4.31	222.73	1.23	16.08	0.23	0.10	.86 hr	12.8	0.1
Predict 2 w	eeks										
Baseline	None	24-Oct-19 12:00	59.82	1982.51	2.98	146.60	0.97	0.93	7.64 hr	113.6	0.2
CBE	None	24-Oct-19 12:00	20.07	666.15	1.33	49.27	0.34	0.31	2.57 hr	38.2	0.1
Predict 4 w	eeks										
Baseline	None	7-Nov-19 12:00	335.41	6775.91	15.86	600.60	1.37	3.85	26.1 hr	388.2	0.9
CBE	None	7-Nov-19 12:00	112.52	2267.19	2.96	201.00	0.64	1.45	8.73 hr	129.9	0.2

[†]Assumes T error maps directly into down-track timing, true anomaly or pointing error of circular orbit

Orbital-B – Predicted S/C State $\text{Errors}^{\dagger}\left(1\sigma\right)$ With 3-day Desats

Case	Desats in predict	Map Time	R (m)	T (m)	N (m)	DR (mm/s)	DT (mm/s)	DN (mm/s)	Downtrack Timing Error	Downtrack Pt Error (deg)	Crosstrack Pt Error (deg)
At DCO										using mean motion*time	
Baseline	Desats	10-Oct-19 12:00	0.64	0.55	0.38	0.06	0.09	0.04	.1 min	0.0	0.0
CBE	Desats	10-Oct-19 12:00	0.46	0.29	0.31	0.03	0.08	0.03	.1 min	0.0	0.0
Predict 1 da	ay										
Baseline	Desats	11-Oct-19 12:00	7.14	65.34	1.92	4.50	0.24	0.02	15.1 min	3.7	0.1
CBE	Desats	11-Oct-19 12:00	3.97	43.58	3.65	2.92	0.13	0.02	10.1 min	2.5	0.2
Predict 2 da	ays										
Baseline	Desats	12-Oct-19 12:00	9.87	156.30	1.77	10.95	0.34	0.05	36.1 min	9.0	0.1
CBE	Desats	12-Oct-19 12:00	4.43	97.16	3.50	6.65	0.14	0.03	22.5 min	5.6	0.2
Predict 1 w	eek										
Baseline	Desats	17-Oct-19 12:00	15.44	1082.00	7.99	77.13	1.04	0.83	4.17 hr	62.0	0.5
CBE	Desats	17-Oct-19 12:00	9.70	813.00	7.50	57.50	0.83	0.75	3.13 hr	46.6	0.4
Predict 2 w	eeks										
Baseline	Desats	24-Oct-19 12:00	98.09	2973.00	18.78	218.90	1.66	1.78	11.45 hr	170.3	1.1
CBE	Desats	24-Oct-19 12:00	75.45	2204.00	18.41	161.70	1.74	1.45	8.49 hr	126.3	1.1
Predict 4 w	eeks										
Baseline	Desats	7-Nov-19 12:00	501.20	8984.00	42.47	803.50	4.05	6.05	34.61 hr	514.7	2.4
CBE	Desats	7-Nov-19 12:00	340.60	6104.00	43.74	545.70	5.39	6.73	23.51 hr	349.7	2.5

[†]Assumes T error maps directly into down-track timing, true anomaly or pointing error of circular orbit

DCO+1 DAY

DCO+ 2 DAYS No Desats

DCO + 3 DAYS

DCO+ 4 DAYS No Desats

DCO+ 5 DAYS

DCO+ 6 DAYS

DCO+1 WEEK

DCO+2 WEEKS No Desats

- OSIRIS-REx mission requires unprecedented levels of navigation performance during Bennu Proximity Operations
 - Science Observations, Orbit insertion, Recon and TAG require predicted state errors to be on the order of 10's of meters
 - This in turn requires late OD deliveries for updating the planned maneuver or Science observation with OpNav images shuttered ~24 hrs before the event
 - Successful TAG requires the non-gravitational forces to be characterized ≤ 3 nm/s² level
 - Rapid cadence of maneuvers and observation plans are required to meet Mission & Science Objectives

Backup

OSIRIS-REx

Defined

• Origins

- Return and analyze a sample of pristine carbonaceous asteroid regolith
- Spectral Interpretation
 - Provide ground truth for telescopic data of the entire asteroid population
- Resource Identification
 - Map the chemistry and mineralogy of a primitive carbonaceous asteroid

Security

- Measure the Yarkovsky effect on a potentially hazardous asteroid
- Regolith Explorer
 - Document the regolith at the sampling site at scales down to the sub-cm

Mission Success

- Rendezvous with asteroid Bennu
- **Contact** the asteroid surface with TAGSAM and **collect a sample**
- Safely return asteroid sample to Earth and deliver them to the curatorial facility at the NASA Johnson Space Center
- Provide for the initial analysis and plan for the long-term curation of the returned sample
- Ensure a sample allocation process is in place to conduct early science return studies as well as long-term general studies

REPRESENTATIVE MAJOR FORCES EARLY PROXIMITY OPERATIONS

TWO-YEAR CRUISE

