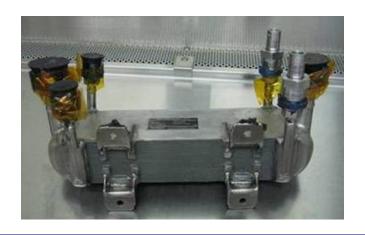
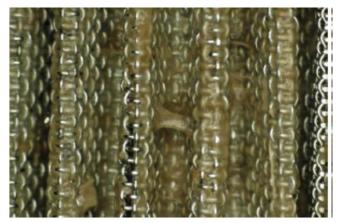
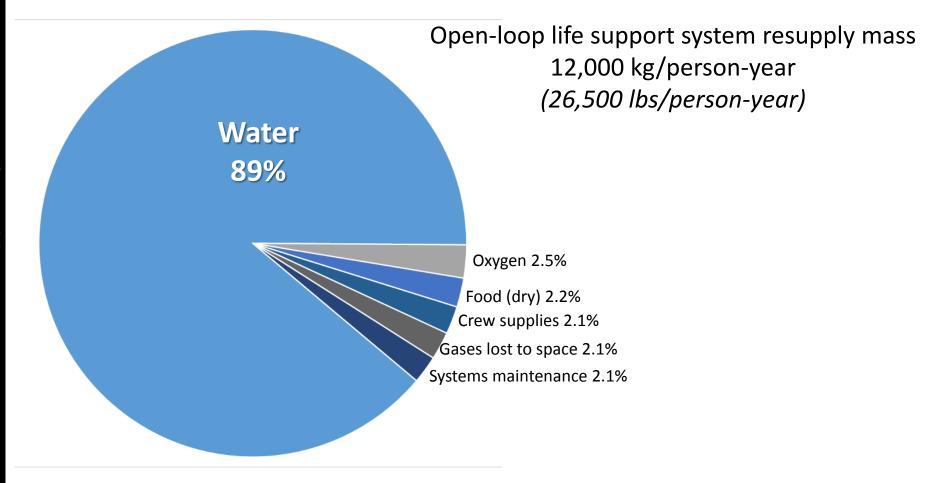


Beneficial Microbes in Spaceflight or: How I Learned to Stop Worrying and Love the Bugs

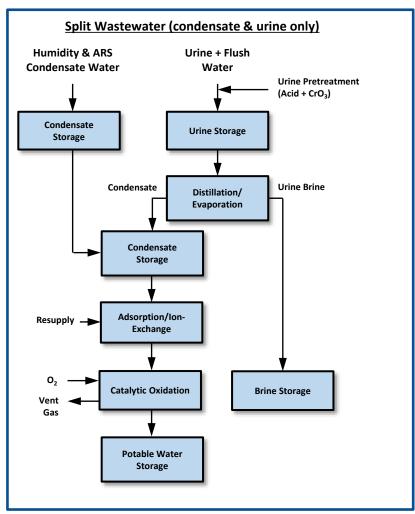

Leticia Vega

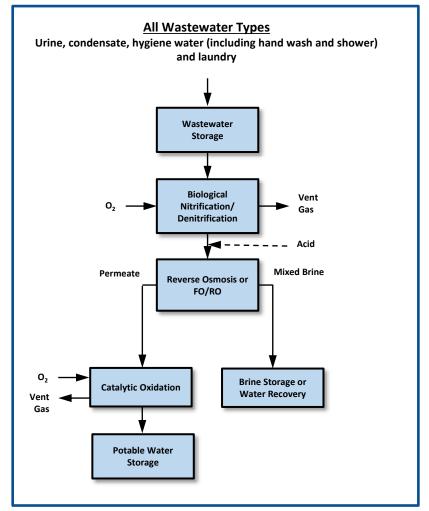

Background

- Microorganisms have been hitchhiking their way into space since the beginning of manned spaceflight
 - Apollo
 - Space Shuttle
 - ISS
- Typically considered a nuisance



Life Support Requirements




Water Recovery Architectures

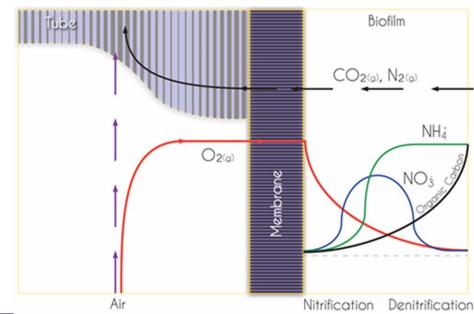
Physiochemical Water Processor (ISS)

Biological Water Processor

ARS = Atmosphere Revitalization System (CO₂ Reduction); FO/RO = Forward Osmosis/Reverse Osmosis

Biological Water Processor (BWP)

- Comprised of four (4) membrane aerated bioreactors (MABR)
- Tube-in-tube design
 - Oxygen module: contained membranes where the biological activities take place
 - Water shell: Contained the fluid and provided structural support to oxygen module



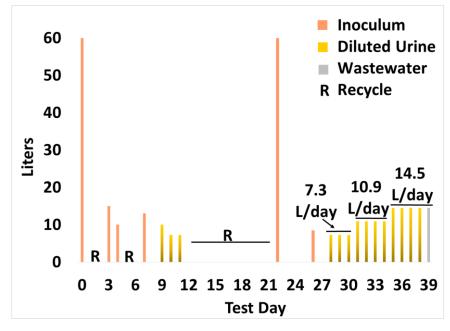
SND Process

Test Summary

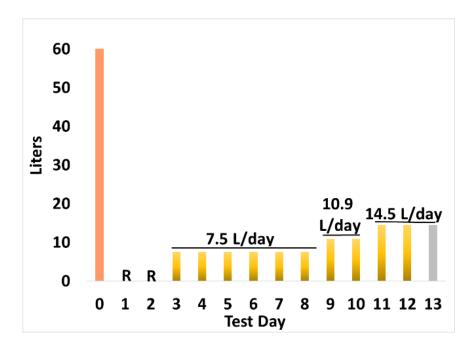
- BWP operated for 286 days in a four reactor configuration
 - 84% TOC removal
 - 56% Ammonium conversion
- Took 71 days to go from inoculation to full operations (i.e. process all wastewater components
 - Could that duration reduced?

Rapid Start Evaluation

- Goal: to reduce the time from inoculation to steadystate operations
- Two components to testing:
 - Membrane modification evaluation
 - Chemically etched tubing
 - Conditioned tubing
 - Inoculation protocol validation
 - Diluted vs non-diluted inoculum

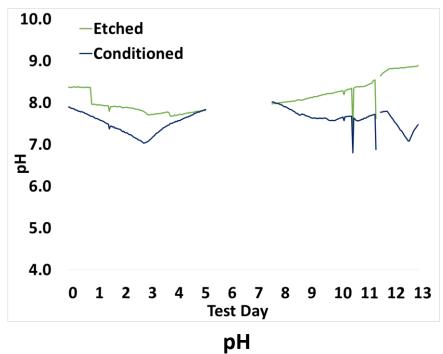


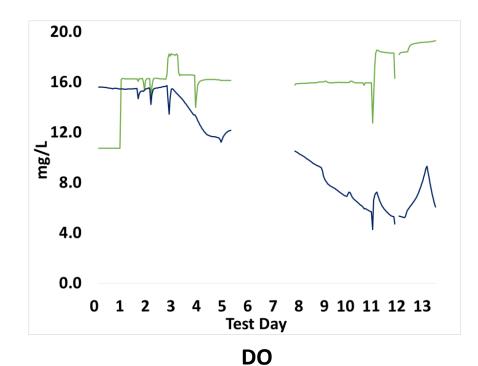
Step	Volume fraction (% added of daily feed volume, 14.5L)	Influent composition	Volume	Feed Rate
	100%	Filtered inoculum	60 liters total	0 (in recycle)
First	50%	Urine in DI	7.5 L total (1.14L urine)	5.0 ml/min
Second	75%	Urine in DI	10.9L total: (1.7L urine)	7.6 ml/min
Third	100%	Urine in DI	14.5L total: (2.275L urine)	10.1 ml/min
Fourth	100%	Full wastewater combined stream	14.5L combined wastewater	10.1 ml/min



Etched vs Conditioned Membranes

Etched




Conditioned

pH and DO: Etched vs. Conditioned

Summary and Next Steps

- Reduced duration of inoculation from 71 to 13 days
- Further work
 - Evaluate physical characteristics of membranes
 - Repeat rapid inoculation protocol in subsequent bioreactor tests for reproducibility
 - Evaluate surface area loading rates
 - Develop design specifications for an on-orbit MABR

Physiological Changes in Spaceflight [©]

- Bone loss
- Muscle atrophy
- Vision issues
- Depressed immunity
 - Virus reactivation

February 10, 2016 13

 Microbiome (Hernan Lorenzi, J Craig Venter Institute) — Evaluating changes in the microbiome and immune status of nine astronauts during spaceflight missions.

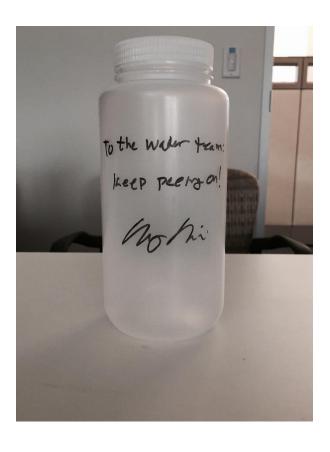
Impact of Long-term Space Travel on an Astronaut's Microbiome

- Background: Very limited information is available on potential changes in the astronaut microbiome. Current evidence suggests these changes could have major impact on crew health.
- Research Questions: What are the changes in the crew microbiome and could they have health implications?
- **Status:** This study designed to gather information on changes in the crew microbiome before during and after spaceflight missions. Samples include nasal, fecal, multiple skin, and environmental sites. Sample size is 9 astronauts. Samples continue to be batched and sent to the PI's institution for analysis. Sample collection is due to finish in August 2016.
- Benefit: While this study is a small overall sample size, these samples should provide a foundation from which (a) definition of any potential crew health problems can begin and (b) follow up studies can be solicited.

Microbiome Experiment Design

Pre-Flight	In-Flight**	Post-Flight
Subject Swabs L-240, L-150, L-90, L-60	Subject Swabs FD7, FD90, R-14	Subject Swabs R+1/3, R+30, R+60
Gastrointestinal Sampling L-240, L-150, L-90, L-60	Gastrointestinal Sampling (optional) FD7, FD90, R-14	Gastrointestinal Sampling R+1/3, R+30, R+60
Blood Draw* L-60	Blood Draw** FD7, R-1	Blood Draw* R+0, R+180
Saliva Collection*** L-240, L-150, L-90, L-60	Saliva Collection*** FD7, FD90, R-14	Saliva Collection*** R+1/3, R+30, R+60, R+180
	Perspiration Swabs FD7, R-14	
	ISS Surface Swabs FD7, R-14	
	Potable Water Collection R-14 (once per increment)	

^{*}Shared stick with Med Ops


^{**}If possible, sessions will occur concurrently with existing medical/research activities

^{***}Each session consists of a 7-day period with a sample collection performed every other day

Thank you!

