AN INDEPENDENT ORBIT DETERMINATION SIMULATION FOR THE OSIRIS-REx ASTEROID SAMPLE RETURN MISSION

AAS 16-103
FEBRUARY 9, 2016

39TH ANNUAL AAS GUIDANCE & CONTROL CONFERENCE
BRECKENRIDGE, CO
FEB 5-10, 2016

K. GETZANDANNER*, D. ROWLANDS†, E. MAZARICO†,
P. ANTREASIAN††, C. JACKMAN††, M. MOREAU*

*NASA/GSFC CODE595,
8800 GREENBELT RD,
GREENBELT, MD 20771, USA.

†NASA/GSFC CODE698,
8800 GREENBELT RD,
GREENBELT, MD 20771, USA.

††KinetX, Inc., SPACE NAVIGATION AND FLIGHT DYNAMICS PRACTICE
21 W. EASY ST., STE 108,
SIMI VALLEY, CA 93065 USA.
FDS Team consists of three organizations:

KinetX Space Flight Dynamics Practice
- Orbit Determination
- Optical Navigation (OpNav)
- Maneuver Planning

Lockheed Martin Space Systems Company
- Trajectory Design & Optimization

Goddard Space Flight Center
- FDS Management
- Launch Window Analysis
- IV&V of Navigation Products
Orbit Determination Thread Test 3B

- Realistic Orbit Determination & OpNav simulation of the Orbit B mission phase leading up to TAG

- Objectives:
 - Test interfaces between OD & OpNav Software
 - Verify flight dynamics requirements
 - Assess navigation performance
 - Ensure consistent results across FDS organizations

Pre-TAG Operations Timeline

- Phasing Burn
- Phasing Burn
- TAG ODM DCO
- TAG ODM

ODTT3B
ODTT3B SOFTWARE

• MIRAGE
 • Operational precision OD software
 • Developed by JPL/CalTech, licensed to KinetX

Independent evaluation of ODTT3B

• GEODYN
 • Precision OD and geodetic parameter estimation software
 • Radio-science and IV&V of navigation products
 • Weighted Batch Least Squares (WBLS) Estimator
 • Developed by the GSFC Planetary Geodynamics Laboratory

• SPC Toolkit/Lithosphere
 • Global shape model and topographic product development
 • OpNav image processing and landmark measurement generation
 • Developed by Dr. Robert Gaskell, maintained by the OSIRIS-REx SPOC at University of Arizona
• Nominal Orbit B: 1 km radius, circular orbit in the terminator plane

• Perturbations applied to “truth” trajectory propagation:
 • Initial Spacecraft State
 • Bennu Gravitational Parameter
 • Bennu Spherical Harmonic Coefficients (up to degree/order 3)
 • Bennu Orientation (RA/Dec/Rate)
 • Phasing Maneuver ΔV
 • SRP Scale Factor
 • Spacecraft Attitude
 • Spacecraft Thermal Accelerations

• Resulted in errors >300 meters after 4 days
A PRIORI ERRORS

A Priori Trajectory Errors
[Epoch: 07-OCT-2019 13:00 UTC]
SIMULATED DATA

• DSN Radiometric Data
 • Daily passes (6:30am to 2:30pm UTC)
 • Range & Doppler
 • Noise: 3 meters, 0.1 mm/s (1σ)

• NavCam OpNav Images
 • One image every 2 hours (54 total)
 • Blackout Period: 3:15pm to 8:45pm UTC
 • Attitude Errors: 1.15 mrad boresite, 1.01 mrad roll (1σ)
 • Read Noise and Dark Current Added

• Altimetric Range Measurements
 • Based on OSIRIS-REx Laser Altimeter (OLA)
 • Generated using a Digital Elevation Model (DEM) at 8 pixels per degree [PPD]
 • Raster Scan at 10,000 Hz
SYNTHETIC IMAGE RENDERING

- Synthetic surface model generated at 5cm resolution
 - Based on radar-derived shape model (20 meter resolution)

- Lens and detector model based on OSIRIS-REx NavCam

- Stochastic ray-tracing of terrain data using GSFC/Freespace
Radio-Only Solution (1/2)

- Performed an OD solution with radiometric data only
 - Provides a reasonable *a priori* estimate for automated image processing

- Solved in two arcs:
 - Up to (but not including) the phasing maneuver
 - Through the second DSN pass after the phasing maneuver

- Estimated Parameters:
 - Initial State
 - SRP Scale Factor
 - Phasing Maneuver ΔV
 - Constant Acceleration Bias
 - DSN Range Bias

- Bennu geophysical parameters held fixed at *a priori* values

![Diagram showing DSN Tracking and Iteration #1 and #2 over the dates Oct 7 to Oct 12. The diagram indicates tracking and iteration activities with specific times and events.](attachment:image.png)
OpNav Image Processing

- Registered topographic maps (75 cm resolution) in the OpNav images
 - Derived from 5cm global data
 - Location of the map center (aka “landmark”) is used as an OD observable

- Processed 96 landmarks in 54 images
 - Resulted in 428 OpNav Observables
 - Average shifts of ~25 pixels

- Landmark location errors of 1 meter in each axis (1σ)
Re-calculated the OD solution with radiometric and landmark data

Solved in two arcs:
- Entire arc with geophysical parameters fixed
- Entire arc with geophysical parameters as solve-fors

Estimated Parameters:
- Initial State
- SRP Scale Factor
- Phasing Maneuver ΔV
- Constant Acceleration Bias
- DSN Range Bias
- Camera pointing at each image epoch
- Bennu-Fixed Landmark Locations
- Bennu Geophysical parameters

Final solution measurement residual statistics:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Weight</th>
<th>Number</th>
<th>Mean</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (RU)</td>
<td>24.5</td>
<td>188</td>
<td>0.00</td>
<td>21.89</td>
</tr>
<tr>
<td>Doppler (Hz)</td>
<td>0.0056</td>
<td>1738</td>
<td>0.0003</td>
<td>0.0059</td>
</tr>
<tr>
<td>OpNav, Total (pix)</td>
<td>0.45</td>
<td>428</td>
<td>-0.0234</td>
<td>0.8398</td>
</tr>
</tbody>
</table>
Radio & Landmark Solution Residuals: Landmark Sample/Line

- Sample
- Line

Residual [px] vs. Δt [days]
Radio + Landmark Solution Errors
[Epoch: 07-OCT-2019 13:00 UTC]
ADDING ALTIMETRY DATA (1/3)

- Re-calculated OD solution with radiometric, landmark, and altimetric range data

- Used a 1 PPD DEM to compute predicted measurements
 - 8 PPD used for “true” measurements

- Same solve-for parameters and filter strategy as before

- Showed a modest improvement in trajectory solution and improved geodetic parameter estimation (particularly Bennu GM)

Final solution measurement residual statistics:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Weight</th>
<th>Number</th>
<th>Mean</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (RU)</td>
<td>24.5</td>
<td>188</td>
<td>0.00</td>
<td>21.28</td>
</tr>
<tr>
<td>Doppler (Hz)</td>
<td>0.0056</td>
<td>1738</td>
<td>0.0014</td>
<td>0.0061</td>
</tr>
<tr>
<td>OpNav, Total (pix)</td>
<td>0.45</td>
<td>428</td>
<td>-0.0729</td>
<td>0.8361</td>
</tr>
<tr>
<td>Altimetric Range (cm)</td>
<td>15</td>
<td>2667</td>
<td>-0.85</td>
<td>29.5</td>
</tr>
</tbody>
</table>
Radio, Landmark, & Direct Altimetry Solution Residuals: Altimetry

Residuals [m] vs. \(\Delta t \) [days]
Radio + Landmark + Altimetry Solution Errors
[Epoch: 07-OCT-2019 13:00 UTC]

- Radial
- In-Track
- Cross-Track
- RSS
Bennu Geophysical Parameter Estimation (1/2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Truth</th>
<th>Without Altimetry</th>
<th>With Altimetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM, μ (m3/s2)</td>
<td>5.1969</td>
<td>5.1626</td>
<td>5.1954</td>
</tr>
<tr>
<td>RA, α (deg)</td>
<td>86.6388</td>
<td>86.5730</td>
<td>86.6205</td>
</tr>
<tr>
<td>Dec, δ (deg)</td>
<td>-65.1086</td>
<td>-65.1207</td>
<td>-65.1165</td>
</tr>
<tr>
<td>Constant, ω_0 (deg)</td>
<td>89.6456</td>
<td>89.6454</td>
<td>89.6453</td>
</tr>
<tr>
<td>Rate, ω (deg/day)</td>
<td>2010.489449</td>
<td>2010.489433</td>
<td>2010.489404</td>
</tr>
</tbody>
</table>
Radio + Landmark + Altimetry Gravity Coefficient Estimation

Value [Normalized]

-0.06 -0.04 -0.02 0 0.02

C_{20} C_{21} C_{22} C_{30} C_{31} C_{32} C_{33} S_{21} S_{22} S_{31} S_{32} S_{33}

Truth
A Priori
A Posteriori

Error

0 0.005 0.01 0.015

C_{20} C_{21} C_{22} C_{30} C_{31} C_{32} C_{33} S_{21} S_{22} S_{31} S_{32} S_{33}

Truth - A Posteriori
Formal Uncertainty [1\sigma]
SUMMARY

- Successfully completed an independent OD and OpNav simulation of the Orbit B mission phase
 - Interfaces between OD and OpNav software worked properly
 - Refined procedures and solution strategies
 - Definitive solution accuracy of <4 meters
 - Consistent solutions across FDS software and organizations

- Verified that short-arc solutions are not favorable for geophysical parameter estimation, but trajectory still meets requirements
 - Expected for a four-day arc with realistic perturbations to the dynamics
 - Will rely on a nine-day, uninterrupted radio-science campaign at the beginning of Orbit B

- Incorporating altimetry data resulted in a modest improvement in solution accuracy, notably:
 - Radial component of the trajectory
 - Bennu geophysical parameters (specifically GM)