Lessons Learned Briefing PLSS 2.0

Joe McMann June 25, 2012

Preliminary Thoughts

- My preparation of this presentation prompted many questions which had not occurred to me during the May 31, 2012, briefing
 - Some questions are not specific to the PLSS
 2.0 manufacturing and test topic, but I didn't want to lose them
- Answers provided today will influence the final, written report to be provided after this briefing

Lessons Learned Briefing

- Made up of five components:
 - Comments on what I saw and heard during the briefing, related to my own experience
 - Including questions that I failed to ask earlier
 - Possible risks and some thoughts on how to mitigate them (may revisit some topics from above)
 - Thoughts on what needs to be done to have a complete EVA system (may revisit above comments)
 - Some comments on CTSD ADV 780
 "Development Specification for the Advanced EMU (AEMU) Portable Life Support System (PLSS)"

Random comments

- Overview Carly Watts
 - Team Unbelievable depth
 - Specialists for everything!
 - Very heavy on analysis; maybe short on design
 - Where is manufacturing support on the team?
 - Usually called manufacturing engineering
 - System/Component advancements
 - New technology items just about across the board
 - Up side: if they work as advertised, the system is a step function forward
 - Down side: significant problems with any one can pace the whole system

- Overview Carly Watts (cont'd)
 - Project Roadmap
 - Shows a luxuriously-paced schedule e.g., three iterations after PLSS 2.0 to get a DTO item
 - No tie-in of CWCS 2.0 to PLSS 2.0 shown
 - This is a critical subsystem
 - Need to find problems as soon as possible
 - No tie-in of suit to PLSS 2.0 configuration shown
 - Crew evals with hi-fi mockups
 - Should maybe have an accelerated schedule in your "hip pocket" if funding gets tight, and you need an earlier DTO

- Overview Carly Watts (cont'd)
 - PLSS 1.0 findings
 - SWME backpressure valve; RCA pneumatic valve identified as areas for improvement – more on these later
 - Good to see the importance recognized of knowing the configuration, and how it relates to PLSS 2.0
 - Keep that philosophy throughout the program

Overview – Carly Watts (cont'd)

- PLSS 2.0 Development

 It may be not feasible, but if you could evaluate realistic airlock and suit port interfaces with PLSS 2.0, it could save time later

Potential Risks/Possible Mitigation Actions

• Risk

- Problems with manufacturing final version (post-PLSS 2.0)
 - E.g., accommodation of structural loads
- Difficulty of coordinating "long distance" with Glenn on CWCS/PLSS 2.0 testing at JSC
- Out-year funding problems and/or accelerated schedule
- Problems in integration of suit, PAS, PLSS, Suit-port
 - Current plan seems to push integration out pretty far

Mitigation

- Incorporate Manufacturing Engineering for later versions (see next slide)
- Have Glenn rep. on site for critical testing, starting with CWCS 2.0
- Have "hip-pocket" schedule for getting to DTO configuration faster
- Early evaluations of integrated system – hi-fi mockups; tabletop CWCS/controls & displays mockup

Test Objectives – Carly Watts

- PLSS level test objectives

- Glad to see you plan to run to failure define that green squatcheloid!
- Good review comment on demonstrating rapid turnaround – need to explore all the possible ways you can use (and abuse) the system
- The metabolic simulations need to mimic how humans actually react, e.g., I think that you can hit the RCA with a 3000 btu CO2 load rapidly, but the corresponding water load may lag

- Test Objectives Carly Watts (cont'd)
 - PAS
 - Default modes and any manual backups need to be demonstrated – totally automatic makes me nervous
 - Vehicular Interfaces
 - Try to determine what the promising options are for vehicle power supplies
 - Try to simulate expected ripple, impedances, etc.
 - We got some unwelcome surprises in Shuttle
 - Lack of dynamic testing requirements leaves a hole...

Test Objectives – Carly Watts (cont'd)

 I didn't find anything specifically related to crew-operated controls and displays

Risk

- Undesirable Reaction of RCA to early hi-CO2/low H2O
 - Sweat rate is reaction to increase in body core temp
- Crew non-acceptance of controls and displays
 - Don't see much evidence of manual backup – does crew agree with current concept?
- Vehicular power interface incompatibility
- Packaging problems due to incorporation of system accommodation of dynamic environmental loads, e.g., brackets, line supports.

Mitigation

- Incorporate a profile with early high (~700w) CO2 with low H20 – mimic human performance
- Have crew evaluate C&D hi-fi mockups/table-top simulator
- Get over/under voltage; impedance; and ripple requirements out there ASAP
- Look at worst combination of Dragon and Progress loads and see effects on design.

- PLSS Components Colin Campbell
 - POR/SOR
 - Good to be using Monel from the start
 - Are seats Vespel?
 - Identical design should be a benefit
 - Statement made that POR/SOR may be orientation sensitive
 - This could be a risk area for dynamic testing
 - What happens if/when stepper motor fails?
 - Fails to change position
 - Fails open/Fails closed
 - Test article pressure vessel
 - Carbon overwrapped Al bottle has JSC structures bought off on the bottle vis-à-vis static fatigue failure mode?
 - Arde cryoformed SS planned for flight bottle Unaged?

Risk

- Soft seat design incompatible with oxygen
- POR/SOR may be damaged by dynamic loads, if orientation sensitive
- Static-fatigue failure of test pressure vessel
- Stress-corrosion sensitivity of flight cryoformed SS bottle
 - Aged material has higher strength than unaged, but is stress corrosion sensitive

Mitigation

- Use Vespel as early as possible
- Impose dynamic loads (worstcase Dragon/Progress) and assess results
- Have JSC structures validate safety
- Assure unaged material used for flight bottle

- PLSS Components Colin Campbell (cont'd)
 - Fan
 - Speed controlled by flow sensor feedback
 - 4.7 CFM is this constant volumetric flow rate independent of pressure? Is this enough to wash out CO2 with representative helmet flow configurations at various met rates?
 - What happens if flow sensor feedback lost or out of spec high?

- PLSS Components Colin Campbell (cont'd)
 - Gas Sensor
 - Seems to be very different from straight IR absorption in the CO2 band
 - Do the sensors require reference cells, or are they calibrationfree in operation?
 - Is the 5 second response time for the sensor alone, or in the system? Specs should probably be more relaxed at the system vs component level to avoid eliminating good sensors
 - How do these sensors work to control the RCA?
 - Even though the system operation would seem to be biased towards dry conditions, what happens if liquid water enters the sensor? Are there steps being taken to eliminate/alleviate this potential condition?
 - Having the ability to monitor water and Oxygen in addition to CO2 should be a very valuable engineering tool

Briefing Material PLSS Components – Colin Campbell (cont'd)

- PLSS Components Colin Campbell (cont'd) – RCA
 - Vast potential improvement over Metox
 - RCA is perhaps the most significant "heavy-hitter" change to the PLSS schematic from previous systems
 - Goes one better than Metox regeneration in place
 - Removes water mixed blessing?
 - Has (theoretical) potential of exposing suit loop to vacuum
 - Interrupts flow to helmet
 - Depends on input from gas sensor(s?) for operation
 - Was not tested in all-up configuration in PLSS 1.0 tests
 - » No bypass valve
 - As I understand it, RCA will not work on Mars (4.3 mm ppCO2)
 - » What is the planned approach for Mars?
 - 1-3 minute cycle rate why not simplify and go to fixed cycle rate?
 - What is overdesign margin on CO2 and H2O removal? What happens if water comes through?

Risk

- Failure mode of exposing suit loop to vacuum during bed changeover
- Flow interruption to helmet undesirable
- Control system doesn't work, e.g., CO2 sensor failure or controller failure
- Bypass valve (if incorporated) fails to operate
- RCA doesn't work for Martian atmosphere

Mitigation

- Verify through FMEA and design features that this cannot happen, or takes several sequential failures
- Verify through design/test that either flow interruption OK, or bypass valve makes it tolerable
- 1) Assure default configuration gives automatic adequate cycling for high met rate; or 2) have manual select
- Have manual override
- Use something like Metox

- PLSS Components Colin Campbell (cont'd)
 - Liquid-to-gas HX
 - Glad to see drain ports (you never know...)
 - Vent Flow Sensor
 - This is small, but a "heavy hitter"
 - It controls fan speed
 - It may be orientation sensitive therefore, may be sensitive to dynamic environmental input
 - Previous questions about effects of VFS failures default configuration

Risk

- Moisture condensation in HX (e.g., due to breakthrough of RCA)
- Vent flow sensor damaged by dynamic loads

Mitigation

- For PLSS 2.0, check drains periodically. If water found, determine cause and if viable for flight, incorporate water trap
- Impose worst case
 Dragon/Progress loads and assess results – take action if required

- PLSS Components Colin Campbell (cont'd)
 - Trace contaminant control
 - Are there no SOA active contaminant removal systems?
 - A powered system might save quite a bit of weight and volume

- Risk
 - Channeling of charcoal contents due to dynamic environments

Mitigation

Impose worst-case
 Dragon/Progess dynamic loads and assess results

- PLSS Components Colin Campbell (cont'd)
 - Feedwater Supply Assembly
 - Is heat seal method used a mechanical or RF Type?
 - Any thought given to redundant seals?

- Risk
 - Water tank seal leaks

 Gas bubble prevents full fill (translucent design would show condition)

- Mitigation
 - Incorporate redundant seal
 - (Problem how to check it?)
 - Assure feedwater supplies compatible with degassed water, OR, incorporate gas separator for fill

- PLSS Components Colin Campbell (cont'd)
 - Water pump
 - Have subatmospheric tests of the PLSS 2.0 pump been performed, and if so, what were the results?
 - Positive displacement is good from a pumping standpoint; requires the relief valve to prevent overpressurization
 - Will relief valve be checked as part of pre-use checkout?
 - In any event, with all the electronic controls, why not have an automatic shutdown at, say, 20 psid?

- Risk
 - Pump cavitation

 Pump relief valve fails closed (or open)

- Mitigation
 - Increase water tank supply pressure, if required
 - (pressurization line/regulator required, OR stretched bladder)
 - Check before use; assure failure in use detected by CWCS – shutdown primary; go to aux.

- PLSS Components Colin Campbell (cont'd)
 - Avionics coldplate
 - Prudent to design, build and evaluate this, even if eventual plans are not to require it
 - Plans change....

- PLSS Components Colin Campbell (cont'd)
 - Battery
 - Suggest individual cell protection circuitry in Li ion battery in case of internal short/runaway
 - Batteries are black art...
 - For final battery, look at all technologies lithium ion polymer, nickel-metal hydride and silver-zinc need to be researched, along with any other promising technologies

- PLSS Components Colin Campbell (cont'd)
 - SWME
 - Another "heavy hitter" in terms of new technology
 - Back-pressure controls had problems in the past
 - Apollo ECS 240 controller had difficult problem statement: +/- 2 deg F. over wide range of equipment and environmental loads (IMU protection)
 - Gemini S/C and ELSS evaporators Wax pellet (Vernatherm) expansion/contraction opened/closed steam valve – very coarse control
 - Extremely accurate control probably not required for spacesuit application
 - What happens to biocide upon evaporation of water?
 - What level of filtration is required?

- Risk
 - Biocide inhibits water boiling properties of HFM
 - Problems with backpressure controller

- Mitigation
 - Test; if results show problem, investigate other biocides, e.g., silver ion
 - Investigate other means of backpressure control (see next slides)

Gemini ELSS Heat Exchanger

Gemini ELSS Steam Control Valve

- PLSS Components Colin Campbell (cont'd)
 - Thermal control valve
 - Provides thermal control by varying flow (like Skylab) rather than by varying temperature (like Shuttle)
 - Skylab crews reported some cold spots, but nothing intolerable
 - Does CV have manual override?

- Risk
 - Crew deems flow control (vs temp control) undesirable
 - Automatic control fails

- Mitigation
 - Re-plumb circuit a la Shuttle
 - Incorporate manual override

- PLSS Components Colin Campbell (cont'd) – Mini-ME
 - Looks like better packaging than full sized ME
 - Why not use same simplified controls on SWME?

- PLSS Components Colin Campbell (cont'd)
 - Positive Pressure Relief Valve
 - Needs to have fail-open flow < worst regulator low flow

- PLSS Components Colin Campbell (cont'd)
 - COTS/Other hardware
 - Need to have a good idea of what will be involved to make them compatible with oxygen

- PAS Scott Bleisath/Mike Lichter – CWCS
 - Significant change adding the second "C"
 Seven critical LSS controllers
 - "DCM" desktop will it "look" like a prototype item for crew use?
 - Manual backup for critical control functions?
 - B/U plans for "long poles"?

Risk Mitigation

- Risk
 - Any problems with controllers
 - SWME
 - Fan
 - TCV
 - POR/SOR
 - RCA
 - Pump

- Mitigation
 - Have "hip-pocket" alternate paths
 - Vernatherm (mechanical)
 - Go to constant speed
 - Manual
 - Pneumatic (with var. settings)
 - Default setting (worst case)
 - Constant speed

- Test Program Carly Watts
 - Critical to have CWCS in PLSS 2.0 testing
 - Overall, CTSD-ADV-986 looks to be comprehensive
 - Have a rapid way to incorporate unplanned tests
 - Document the configuration, procedures and results, including unexpected findings

- PLSS Development Lab Dave Westheimer
 - Looks thorough look forward to what will be required for oxygen use
 - Charging
 - Test panels
 - Isolation from nitrogen

- Test Point Matrices Carly Watts
 - Metabolic rate
 - Suggest a profile with a high (i.e., 700 W) spike at the end of the mission
 - Simulates difficulty in returning to habitat/vehicle at the end of EVA
 - Helmet CO2 washout
 - Suggest STS testing of helmet duct configurations, manned testing on treadmill, varying metabolic rates
 - Manned evaluation of controls and displays
 - Suited, pressurized STS

- Analysis Bruce Conger
 - Extensive boundary testing
 - Separate manned tests of red. Tube LCG with and without TCU

- Hazards/Controls Colin Campbell
 - Make sure you have overvoltage protection on power supplies
 - Make sure there's no way to apply reverse polarity, OR have protection on the hardware

- Test Operator Training and Forward Work

 Carly Watts
 - Have tie-in process for oncoming team (overlap, briefing of new team by outgoing team)
 - Have a process for documenting, tracking, investigating and dispositioning anomalies

System-level considerations

- Early system-level evaluations
 - HI-FI mockups, or whatever you have
 - PLSS, C&D, Suit, Suit-Port
 - Also, any EVA accessories that people are thinking of – tools, carts, etc.
 - Multiple crew evaluations early on
- CO2 removal for Mars
 - What looks good, or at least, feasible?

AES Advanced EVA Project Roadmap

System-level considerations

- If funding dries up and/or you get a chance for earlier DTO
 - Look at going from PLSS 2.0 to PLSS 3.1
 - Oxygen compatible; suitable for dynamic environments
 - Use same philosophy for suit, CWCS
- Try to get manned thermal vacuum testing with oxygen as early as possible
 - System level is where the tough problems come out

- 3.2.1.1 Operating Life
 - Strongly suggest that during development, records of pressure cycles on all pressurized containers (e.g., bottles, water storage) be kept, along with powered time
 - History has shown that operational use may impose more cycles than planned
 - Similar concerned with powered-on time
 - May show that flight item requirements can be relaxed
- 3.2.1.4 Limited Life
 - Best case no limited life; reality be prepared for limited life items – be able to track

- Table 3.2.5.1 Leakage rates
 - Worst case component leakages may exceed loop allowables
 - Suggest RMS approach for evaluating components
 - Otherwise, may have to "cherry-pick" components

- Table 3.2.17.2-1 Transient Metabolic Rates
 - Average inspired CO2 concentration dependent on helmet duct configuration, and results of human tests
 - Suggest parallel tests of helmet/duct configurations with subjects of various sizes
- 3.2.18 Impact Tolerance
 - I think we also had a requirement for an impact with a 0.020" radius corner (like a filing cabinet)
 - System just had to hold together; didn't have to operate in spec

- 3.5.2 VENTILATION FLOW (FN-323)
 - May be able to get by with less, if testing of helmet/vent duct indicates
- 3.5.10.3 FREE WATER TOLERANCE sensors
 - Very prudent to allow for free water it's likely to happen
- 3.5.10.4.4 RESPONSE TIME (CO2 sensor)
 - Make sure system level response time allows for physical location of sensor
 - Don't tax sensor with needing to operate the same as it would as a component

- 3.5.19 NEGATIVE PRESSURE RELIEF
 - Prudent to allow package space/accessibility for this in case it's needed
- 3.5.20.2 POSITIVE LOCKING AND CONFIRMATION (Purge Valve)
 - Suggest at least two separate and exclusive motions to open valve
- 3.6.7 THERMAL CONTROL VALVE
 - Suggest manual backup
 - Interested in crew response to flow variation vs temperature variation

- 3.6.11 FEEDWATER QUANTITY
 - What is potential for a gas bubble forming when pressure decreases?
 - How do you deal with one, if it occurs?
- 3.6.18 OVER-PRESSURE PROTECTION for water loop

– How is relief valve checked before use?

- 4.1 VEHICLE INTERFACES
 - -4.1.1 POWER
 - Make sure that impedances and ripple are compatible with PLSS components
- 5.1.5 DYNAMIC LOADS
 - 5.1.5.1 RANDOM VIBRATION
 - Suggest looking at worst case combination of Dragon and Progress module launch/landing requirements

Random Comments

- Interfaces, Interfaces, Interfaces...
 - You've got 'em aplenty
 - With other pieces of hardware
 - With other centers
 - With unknown vehicles
 - The tie-in between the suit, PLSS, CWCS and suit port looks to be pushed downstream
- Get system-level testing done as soon as you can
 - You are working from the components outward
 - When you get to a system level, you find out how things REALLY work
 - This is where assumptions are verified or thrown out
 - Interfaces are really defined
- Suggest some residency by Glenn at JSC and vice versa
 - Communication tools are great, but nothing beats being on the spot
- The effects of dynamic environments on system design can be significant
 - Brackets, supports, etc. can complicate an otherwise clean design
 - Need to find these out as soon as possible
 - Design in margin

Random Comments

- The team is impressive
 - Lots of capable, motivated people
 - Seems to be short of manufacturing engineering
 - Probably should start involving them
- Schedule is laid-out; laid-back
 - Remember the other end of the spectrum: We went from a standing start from March 26, 1965 to the first USA EVA on June 3, 1965
 - Be prepared for acceleration, cutting back
 - Have ideas for system simplification in mind
- A lot of very new technology being pursued in parallel
 - Be open to back up/back out approaches

Concluding Remarks

- A lot of what I've said isn't directly applicable to PLSS 2.0
 - I didn't want to lose the thoughts
 - Use what seems to fit
- Most Important, enjoy today...this could be as good as it ever gets...