Lessons Learned Briefing
PLSS 2.0

Joe McMann
June 25, 2012
Preliminary Thoughts

• My preparation of this presentation prompted many questions which had not occurred to me during the May 31, 2012, briefing
 – Some questions are not specific to the PLSS 2.0 manufacturing and test topic, but I didn’t want to lose them

• Answers provided today will influence the final, written report to be provided after this briefing
Lessons Learned Briefing

• Made up of five components:
 – Comments on what I saw and heard during the briefing, related to my own experience
 • Including questions that I failed to ask earlier
 – Possible risks and some thoughts on how to mitigate them (may revisit some topics from above)
 – Thoughts on what needs to be done to have a complete EVA system (may revisit above comments)
 – Random comments
Briefing Material

• Overview – Carly Watts
 – Team – Unbelievable depth
 • Specialists for everything!
 • Very heavy on analysis; maybe short on design
 • Where is manufacturing support on the team?
 – Usually called manufacturing engineering
 – System/Component advancements
 • New technology items just about across the board
 – Up side: if they work as advertised, the system is a step function forward
 – Down side: significant problems with any one can pace the whole system
Briefing Material

• Overview – Carly Watts (cont’d)
 – Project Roadmap
 • Shows a luxuriously-paced schedule – e.g., three iterations after PLSS 2.0 to get a DTO item
 • No tie-in of CWCS 2.0 to PLSS 2.0 shown
 – This is a critical subsystem
 – Need to find problems as soon as possible
 • No tie-in of suit to PLSS 2.0 configuration shown
 – Crew evals with hi-fi mockups
 • Should maybe have an accelerated schedule in your “hip pocket” if funding gets tight, and you need an earlier DTO
Briefing Material

• Overview – Carly Watts (cont’d)
 – PLSS 1.0 findings
 • SWME backpressure valve; RCA pneumatic valve identified as areas for improvement – more on these later
 • Good to see the importance recognized of knowing the configuration, and how it relates to PLSS 2.0
 – Keep that philosophy throughout the program
Briefing Material

• Overview – Carly Watts (cont’d)
 – PLSS 2.0 Development
 • It may be not feasible, but if you could evaluate realistic airlock and suit port interfaces with PLSS 2.0, it could save time later
Potential Risks/Possible Mitigation Actions

• Risk
 – Problems with manufacturing final version (post-PLSS 2.0)
 • E.g., accommodation of structural loads
 – Difficulty of coordinating “long distance” with Glenn on CWCS/PLSS 2.0 testing at JSC
 – Out-year funding problems and/or accelerated schedule
 – Problems in integration of suit, PAS, PLSS, Suit-port
 • Current plan seems to push integration out pretty far

• Mitigation
 – Incorporate Manufacturing Engineering for later versions (see next slide)
 – Have Glenn rep. on site for critical testing, starting with CWCS 2.0
 – Have “hip-pocket” schedule for getting to DTO configuration faster
 – Early evaluations of integrated system – hi-fi mockups; tabletop CWCS/controls & displays mockup
Risk Mitigation

Management

PLSS Hardware

Power, Avionics & Software

Design & Analysis

Manufacturing Engineering

Suggested Addition
Briefing Material

• Test Objectives – Carly Watts
 – PLSS level test objectives
 • Glad to see you plan to run to failure – define that green squatcheloid!
 • Good review comment on demonstrating rapid turnaround – need to explore all the possible ways you can use (and abuse) the system
 • The metabolic simulations need to mimic how humans actually react, e.g., I think that you can hit the RCA with a 3000 btu CO2 load rapidly, but the corresponding water load may lag
Briefing Material

• Test Objectives – Carly Watts (cont’d)
 – PAS
 • Default modes and any manual backups need to be demonstrated – totally automatic makes me nervous
 – Vehicular Interfaces
 • Try to determine what the promising options are for vehicle power supplies
 – Try to simulate expected ripple, impedances, etc.
 – We got some unwelcome surprises in Shuttle
 – Lack of dynamic testing requirements leaves a hole…
Briefing Material

• Test Objectives – Carly Watts (cont’d)
 – I didn’t find anything specifically related to crew-operated controls and displays
Risk Mitigation

• Risk
 – Undesirable Reaction of RCA to early hi-CO2/low H2O
 • Sweat rate is reaction to increase in body core temp
 – Crew non-acceptance of controls and displays
 • Don’t see much evidence of manual backup – does crew agree with current concept?
 – Vehicular power interface incompatibility
 – Packaging problems due to incorporation of system accommodation of dynamic environmental loads, e.g., brackets, line supports.

• Mitigation
 – Incorporate a profile with early high (~700w) CO2 with low H2O – mimic human performance
 – Have crew evaluate C&D hi-fi mockups/table-top simulator
 – Get over/under voltage; impedance; and ripple requirements out there ASAP
 – Look at worst combination of Dragon and Progress loads and see effects on design.
Briefing Material

• PLSS Components – Colin Campbell
 – POR/SOR
 • Good to be using Monel from the start
 • Are seats Vespel?
 • Identical design should be a benefit
 • Statement made that POR/SOR may be orientation sensitive
 – This could be a risk area for dynamic testing
 • What happens if/when stepper motor fails?
 – Fails to change position
 – Fails open/Fails closed
 – Test article pressure vessel
 • Carbon overwrapped Al bottle – has JSC structures bought off on the bottle vis-à-vis static fatigue failure mode?
 • Arde cryoformed SS planned for flight bottle – Unaged?
Risk Mitigation

• **Risk**

 – Soft seat design incompatible with oxygen
 – POR/SOR may be damaged by dynamic loads, if orientation sensitive
 – Static-fatigue failure of test pressure vessel
 – Stress-corrosion sensitivity of flight cryoformed SS bottle
 * Aged material has higher strength than unaged, but is stress corrosion sensitive

• **Mitigation**

 – Use Vespel as early as possible
 – Impose dynamic loads (worst-case Dragon/Progress) and assess results
 – Have JSC structures validate safety
 – Assure unaged material used for flight bottle
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Fan
 • Speed controlled by flow sensor feedback
 • 4.7 CFM – is this constant volumetric flow rate independent of pressure? Is this enough to wash out CO2 with representative helmet flow configurations at various met rates?
 • What happens if flow sensor feedback lost or out of spec high?
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Gas Sensor
 • Seems to be very different from straight IR absorption in the CO2 band
 – Do the sensors require reference cells, or are they calibration-free in operation?
 • Is the 5 second response time for the sensor alone, or in the system? Specs should probably be more relaxed at the system vs component level to avoid eliminating good sensors
 • How do these sensors work to control the RCA?
 • Even though the system operation would seem to be biased towards dry conditions, what happens if liquid water enters the sensor? Are there steps being taken to eliminate/alleviate this potential condition?
 • Having the ability to monitor water and Oxygen in addition to CO2 should be a very valuable engineering tool
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – RCA
 • Vast potential improvement over Metox
 • RCA is perhaps the most significant “heavy-hitter” change to the PLSS schematic from previous systems
 – Goes one better than Metox – regeneration in place
 – Removes water – mixed blessing?
 – Has (theoretical) potential of exposing suit loop to vacuum
 – Interrupts flow to helmet
 – Depends on input from gas sensor(s?) for operation
 – Was not tested in all-up configuration in PLSS 1.0 tests
 » No bypass valve
 – As I understand it, RCA will not work on Mars (4.3 mm ppCO2)
 » What is the planned approach for Mars?
 • 1-3 minute cycle rate – why not simplify and go to fixed cycle rate?
 • What is overdesign margin on CO2 and H2O removal? What happens if water comes through?
Risk Mitigation

• Risk
 – Failure mode of exposing suit loop to vacuum during bed changeover
 – Flow interruption to helmet undesirable
 – Control system doesn’t work, e.g., CO2 sensor failure or controller failure
 – Bypass valve (if incorporated) fails to operate
 – RCA doesn’t work for Martian atmosphere

• Mitigation
 – Verify through FMEA and design features that this cannot happen, or takes several sequential failures
 – Verify through design/test that either flow interruption OK, or bypass valve makes it tolerable
 – 1) Assure default configuration gives automatic adequate cycling for high met rate; or 2) have manual select
 – Have manual override
 – Use something like Metox
Briefing Material

- PLSS Components – Colin Campbell (cont’d)
 - Liquid-to-gas HX
 - Glad to see drain ports (you never know…)
 - Vent Flow Sensor
 - This is small, but a “heavy hitter”
 - It controls fan speed
 - It may be orientation sensitive – therefore, may be sensitive to dynamic environmental input
 - Previous questions about effects of VFS failures – default configuration
Risk Mitigation

• Risk
 – Moisture condensation in HX (e.g., due to breakthrough of RCA)
 – Vent flow sensor damaged by dynamic loads

• Mitigation
 – For PLSS 2.0, check drains periodically. If water found, determine cause and if viable for flight, incorporate water trap
 – Impose worst case Dragon/Progress loads and assess results – take action if required
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Trace contaminant control
 • Are there no SOA active contaminant removal systems?
 • A powered system might save quite a bit of weight and volume
Risk Mitigation

• Risk
 – Channeling of charcoal contents due to dynamic environments

• Mitigation
 – Impose worst-case Dragon/Proges dynamic loads and assess results
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Feedwater Supply Assembly
 • Is heat seal method used a mechanical or RF Type?
 • Any thought given to redundant seals?
Risk Mitigation

• Risk
 – Water tank seal leaks
 – Gas bubble prevents full fill (translucent design would show condition)

• Mitigation
 – Incorporate redundant seal
 • (Problem – how to check it?)
 – Assure feedwater supplies compatible with degassed water, OR, incorporate gas separator for fill
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Water pump
 • Have subatmospheric tests of the PLSS 2.0 pump been performed, and if so, what were the results?
 • Positive displacement is good from a pumping standpoint; requires the relief valve to prevent overpressurization
 – Will relief valve be checked as part of pre-use checkout?
 – In any event, with all the electronic controls, why not have an automatic shutdown at, say, 20 psid?
Risk Mitigation

• Risk
 – Pump cavitation
 – Pump relief valve fails closed (or open)

• Mitigation
 – Increase water tank supply pressure, if required
 • (pressurization line/regulator required, OR stretched bladder)
 – Check before use; assure failure in use detected by CWCS – shutdown primary; go to aux.
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Avionics coldplate
 • Prudent to design, build and evaluate this, even if eventual plans are not to require it
 • Plans change….
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Battery
 • Suggest individual cell protection circuitry in Li ion battery in case of internal short/runaway
 • Batteries are black art…
 • For final battery, look at all technologies - lithium ion polymer, nickel-metal hydride and silver-zinc need to be researched, along with any other promising technologies
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – SWME
 • Another “heavy hitter” in terms of new technology
 • Back-pressure controls had problems in the past
 – Apollo ECS 240 controller – had difficult problem statement: +/- 2 deg F. over wide range of equipment and environmental loads (IMU protection)
 – Gemini S/C and ELSS evaporators – Wax pellet (Vernatherm) expansion/contraction opened/closed steam valve – very coarse control
 – Extremely accurate control probably not required for spacesuit application
 • What happens to biocide upon evaporation of water?
 • What level of filtration is required?
Risk Mitigation

• Risk
 – Biocide inhibits water boiling properties of HFM
 – Problems with back-pressure controller

• Mitigation
 – Test; if results show problem, investigate other biocides, e.g., silver ion
 – Investigate other means of back-pressure control (see next slides)
Gemini ELSS Heat Exchanger
Gemini ELSS Steam Control Valve
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Thermal control valve
 • Provides thermal control by varying flow (like Skylab) rather than by varying temperature (like Shuttle)
 • Skylab crews reported some cold spots, but nothing intolerable
 • Does CV have manual override?
Risk Mitigation

• Risk
 – Crew deems flow control (vs temp control) undesirable
 – Automatic control fails

• Mitigation
 – Re-plumb circuit a la Shuttle
 – Incorporate manual override
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Mini-ME
 • Looks like better packaging than full sized ME
 • Why not use same simplified controls on SWME?
Briefing Material

• PLSS Components – Colin Campbell (cont’d)
 – Positive Pressure Relief Valve
 • Needs to have fail-open flow < worst regulator low flow
Briefing Material

- PLSS Components – Colin Campbell (cont’d)
 - COTS/Other hardware
 - Need to have a good idea of what will be involved to make them compatible with oxygen
Briefing Material

- PAS – Scott Bleisath/Mike Lichter
 - CWCS
 - Significant change – adding the second “C”
 - Seven critical LSS controllers
 - “DCM” desktop – will it “look” like a prototype item for crew use?
 - Manual backup for critical control functions?
 - B/U plans for “long poles”?
Risk Mitigation

- Risk
 - Any problems with controllers
 - SWME
 - Fan
 - TCV
 - POR/SOR
 - RCA
 - Pump

- Mitigation
 - Have “hip-pocket” alternate paths
 - Vernatherm (mechanical)
 - Go to constant speed
 - Manual
 - Pneumatic (with var. settings)
 - Default setting (worst case)
 - Constant speed
Briefing Material

• Test Program – Carly Watts
 – Critical to have CWCS in PLSS 2.0 testing
 – Overall, CTSD-ADV-986 looks to be comprehensive
 • Have a rapid way to incorporate unplanned tests
 – Document the configuration, procedures and results, including unexpected findings
Briefing Material

- PLSS Development Lab – Dave Westheimer
 - Looks thorough – look forward to what will be required for oxygen use
 - Charging
 - Test panels
 - Isolation from nitrogen
Briefing Material

• Test Point Matrices – Carly Watts
 – Metabolic rate
 • Suggest a profile with a high (i.e., 700 W) spike at the end of the mission
 – Simulates difficulty in returning to habitat/vehicle at the end of EVA
 – Helmet CO2 washout
 • Suggest STS testing of helmet duct configurations, manned testing on treadmill, varying metabolic rates
 – Manned evaluation of controls and displays
 • Suited, pressurized - STS
Briefing Material

• Analysis – Bruce Conger
 – Extensive boundary testing
 – Separate manned tests of red. Tube LCG with and without TCU
Briefing Material

• Hazards/Controls – Colin Campbell
 – Make sure you have overvoltage protection on power supplies
 – Make sure there’s no way to apply reverse polarity, OR have protection on the hardware
Briefing Material

- Test Operator Training and Forward Work
 - Carly Watts
 - Have tie-in process for oncoming team
 (overlap, briefing of new team by outgoing team)
 - Have a process for documenting, tracking, investigating and dispositioning anomalies
System-level considerations

• Early system-level evaluations
 – HI-FI mockups, or whatever you have
 – PLSS, C&D, Suit, Suit-Port
 • Also, any EVA accessories that people are thinking of – tools, carts, etc.
 – Multiple crew evaluations early on

• CO2 removal for Mars
 – What looks good, or at least, feasible?
AES Advanced EVA Project Roadmap

Subsys

<table>
<thead>
<tr>
<th>Subsys</th>
<th>FY1</th>
<th>FY2</th>
<th>FY3</th>
<th>FY4</th>
<th>FY5</th>
<th>FY6</th>
<th>FY7</th>
<th>FY8</th>
<th>FY9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Suit

- **Z-1 Suit**: Procure, Deliver
- **Z-2 Suit**: Procure, Deliver
- **Z-3 Suit**: Procure, Deliver, Tested

PLS

- **PLSS 1.0**: Design, Deliver
- **PLSS 2.0**: Deliver
- **PLSS 2.5**: Deliver
- **PLSS 3.0**: Deliver
- **PLSS 3.1**: Deliver

PAS

- **AEMU**: PDR, Test
- **Ch B**: Flight, DTO

AEMU

- **Phase 1**: HR & FMEA
- **Phase 2**: HR & FMEA
- **Phase 3**: HR & FMEA

HI-FI Mockups on Z-1,2

AES Phase 1 Funding

AES Phase 2 Funding

- **Z-1 Suit Procure**
- **Z-2 Suit Deliver**
- **Z-2 Suit Design**
- **Z-3 Suit Deliver**
- **Z-3 Suit Procure**
- **Z-3.1 Suit Deliver**
- **Z-3.1 Suit Procure**
- **Pls 2.5 Design**
- **Pls 2.0 Deliver**
- **Pls 2.5 Deliver**
- **Pls 3.0 Deliver**
- **Pls 3.1 Deliver**
- **Pls 4.1 Deliver**
- **AEMU AEMU**
- **Ch B 1.0 Test**
- **Ch B Flight Accept**
- **Suitport**
- **Phase 1**
- **Phase 2**
- **Phase 3**
System-level considerations

• If funding dries up and/or you get a chance for earlier DTO
 – Look at going from PLSS 2.0 to PLSS 3.1
 • Oxygen compatible; suitable for dynamic environments
 – Use same philosophy for suit, CWCS

• Try to get manned thermal vacuum testing with oxygen as early as possible
 – System level is where the tough problems come out
Comments on CTSD-ADV-780

• 3.2.1.1 Operating Life
 – Strongly suggest that during development, records of pressure cycles on all pressurized containers (e.g., bottles, water storage) be kept, along with powered time
 • History has shown that operational use may impose more cycles than planned
 • Similar concerned with powered-on time
 • May show that flight item requirements can be relaxed

• 3.2.1.4 Limited Life
 – Best case – no limited life; reality – be prepared for limited life items – be able to track
Comments on CTSD-ADV-780

• Table 3.2.5.1 Leakage rates
 – Worst case component leakages may exceed loop allowables
 – Suggest RMS approach for evaluating components
 – Otherwise, may have to “cherry-pick” components
Comments on CTSD-ADV-780

• Table 3.2.17.2-1 – Transient Metabolic Rates
 – Average inspired CO2 concentration dependent on helmet duct configuration, and results of human tests
 – Suggest parallel tests of helmet/duct configurations with subjects of various sizes

• 3.2.18 Impact Tolerance
 – I think we also had a requirement for an impact with a 0.020” radius corner (like a filing cabinet)
 • System just had to hold together; didn’t have to operate in spec
Comments on CTSD-ADV-780

• 3.5.2 VENTILATION FLOW (FN-323)
 – May be able to get by with less, if testing of helmet/vent duct indicates

• 3.5.10.3 FREE WATER TOLERANCE - sensors
 – Very prudent to allow for free water – it’s likely to happen

• 3.5.10.4.4 RESPONSE TIME (CO2 sensor)
 – Make sure system level response time allows for physical location of sensor
 • Don’t tax sensor with needing to operate the same as it would as a component
Comments on CTSD-ADV-780

- **3.5.19 NEGATIVE PRESSURE RELIEF**
 - Prudent to allow package space/accessibility for this in case it’s needed

- **3.5.20.2 POSITIVE LOCKING AND CONFIRMATION (Purge Valve)**
 - Suggest at least two separate and exclusive motions to open valve

- **3.6.7 THERMAL CONTROL VALVE**
 - Suggest manual backup
 - Interested in crew response to flow variation vs temperature variation
Comments on CTSD-ADV-780

• 3.6.11 FEEDWATER QUANTITY
 – What is potential for a gas bubble forming when pressure decreases?
 – How do you deal with one, if it occurs?

• 3.6.18 OVER-PRESSURE PROTECTION for water loop
 – How is relief valve checked before use?
Comments on CTSD-ADV-780

• 4.1 VEHICLE INTERFACES
 – 4.1.1 POWER
 • Make sure that impedances and ripple are compatible with PLSS components

• 5.1.5 DYNAMIC LOADS
 – 5.1.5.1 RANDOM VIBRATION
 • Suggest looking at worst case combination of Dragon and Progress module launch/landing requirements
Random Comments

• Interfaces, Interfaces, Interfaces…
 – You’ve got ‘em aplenty
 • With other pieces of hardware
 • With other centers
 • With unknown vehicles
 – The tie-in between the suit, PLSS, CWCS and suit port looks to be pushed downstream

• Get system-level testing done as soon as you can
 – You are working from the components outward
 – When you get to a system level, you find out how things REALLY work
 – This is where assumptions are verified or thrown out
 – Interfaces are really defined

• Suggest some residency by Glenn at JSC and vice versa
 – Communication tools are great, but nothing beats being on the spot

• The effects of dynamic environments on system design can be significant
 – Brackets, supports, etc. can complicate an otherwise clean design
 – Need to find these out as soon as possible
 – Design in margin
Random Comments

• The team is impressive
 – Lots of capable, motivated people
 – Seems to be short of manufacturing engineering
 • Probably should start involving them

• Schedule is laid-out; laid-back
 – Remember the other end of the spectrum: We went from a standing start from March 26, 1965 to the first USA EVA on June 3, 1965
 – Be prepared for acceleration, cutting back
 – Have ideas for system simplification in mind

• A lot of very new technology being pursued in parallel
 – Be open to back up/back out approaches
Concluding Remarks

• A lot of what I’ve said isn’t directly applicable to PLSS 2.0
 – I didn’t want to lose the thoughts
 – Use what seems to fit

• Most Important, enjoy today…this could be as good as it ever gets…