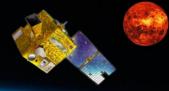
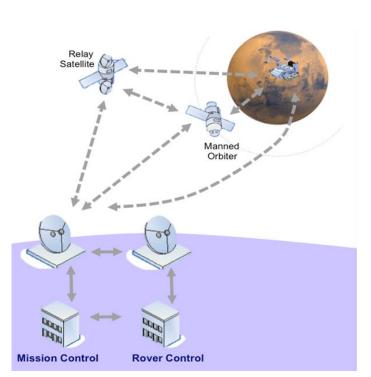
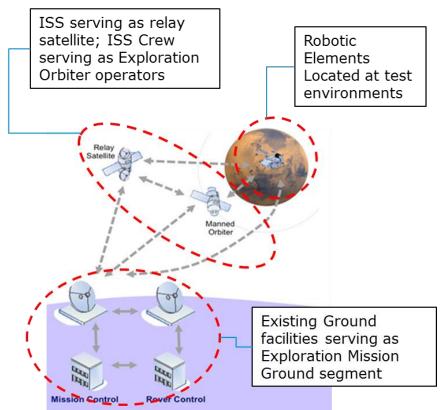


METERON SUPVIS-M


POIWG#39

Huntsville, AL 26-28 January, 2016 Carla Jacobs, Saliha Klai, Koen Struyven

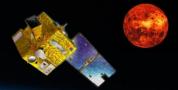




The Multi-purpose End-To-End Robotic Operations Network (METERON)

Reference Exploration Mission Architecture

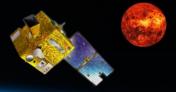
Simulated Exploration Mission Architecture



spaceapplications

The METERON Project

- Stepwise approach
 - OPSCOM-1: Crew activity controlling MOCUP rover
 - OPSCOM-2: Crew activity controlling EUROBOT

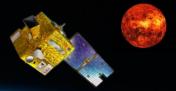


paceapplications

SUPVIS-M Objectives

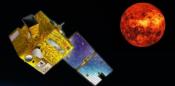
- 1. Assessment of key scenarios where human tele-operation would be required (e.g. at the Moon):
 - Explore science-rich hazardous areas in time-limited operations where the use of autonomous systems may not provide the required performance for the mission or where energy availability may drive a "need for speed"
 - Low-light caves, canyons, or shaded craters
 - Harsh-lighting
 - Slopes, range of rock sizes, unexpected obstacles in unknown environment
 - Gather experience on rover operations, both from robotic and operational aspects.
- 2. Obtain data on **humans performing path planning** and evaluate the differences, in terms of speed of execution / reactivity:

Direct control from the **ground** in traditional manner (Earth-moon round-trip delay <5 sec) vs.

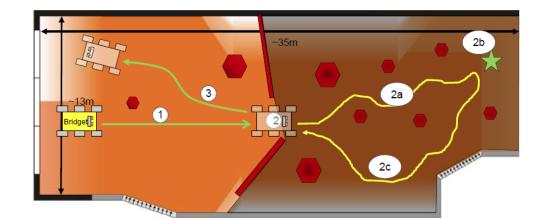

Supervisory control from orbit (here: the ISS by ISS crew members ~1 sec delay)

spaceapplications

SUPVIS-M Objectives


- 3. Provide **metrics to allow comparison / expansion** of results from ground-based experiments vs. a Human-operator in the supervisory control loop.
- 4. Provide / Expand further human factors metrics on using a simple user interface for robotic control by non- specialists (crew).
- Expand the METERON infrastructure capability by adding Airbus Defence
 Space Mars Yard (Stevenage UK) to the METERON Network.

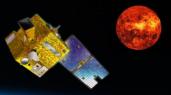
Stevenage Mars Yard (Airbus D&S UK)

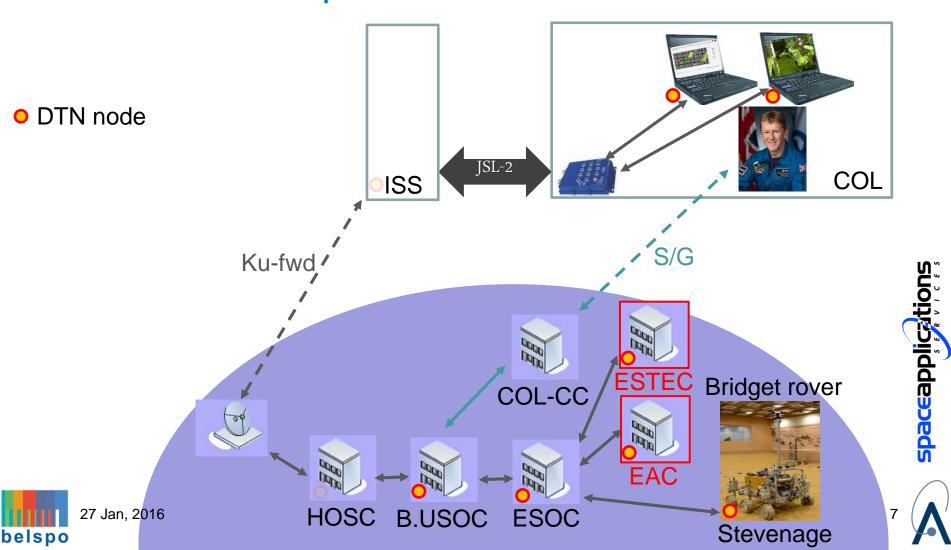


SUPVIS-M scenario

Simulate a scenario were humans are orbiting the Moon and a rover is deployed on the lunar surface

- The rover has been commanded by Ground to arrive at the edge of a zone in shadow or harsh lighting conditions.
- Crew will take over control and
 - perform inspection of the zone in penumbra, identify a safe path
 - identify a number of science targets and map their location
 - get out of the penumbra.
- Ground control will then take back control over the rover.

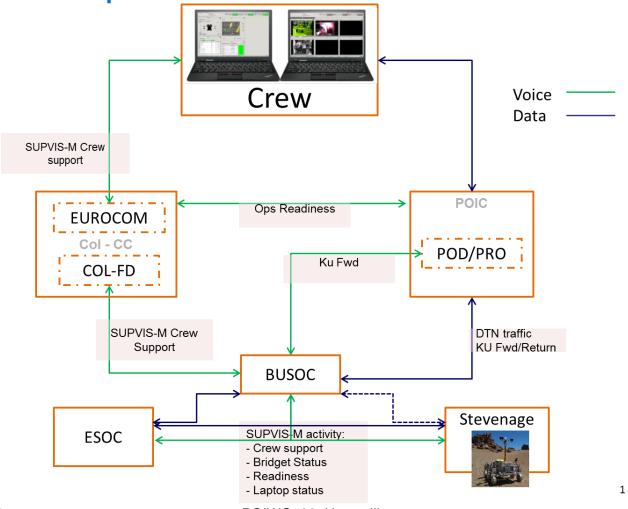




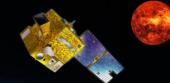
spaceapplications



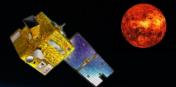
SUPVIS-M Setup



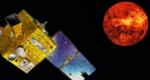
Belgian User Support & Operations Centre


SUPVIS-M operations

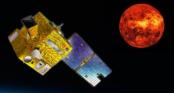
Spaceapplications


SUPVIS-M Requirements

- Resources:
 - 2 T61p laptops, with max. of 80W each
 - laptop control via Ku-Fwd
 - 1 Mbps uplink/downlink per laptop (Ku-Fwd, DTN) over HOSC resources
 - video streaming uplink (over DTN)
- Ground operations start ~ 1 month prior to crew session
- On Board Training is a prerequisite (20 min)
- Crew session (2 hrs):
 - Tim Peake as mandatory crew, to be performed before end of Inc47
 - Details for the goal based activity via Crew Message; questionnaire at end of session
 - Minimum of LOS periods
 - 5-min video message recorded by the crew shortly after session (nice-to-have)
- stowage of laptops at end of session (+/- 20 min) (TBC depends on schedule for SUPVIS-E)


SUPVIS-M status

- PIA available
- Ground infrastructure ready at BUSOC (same as for SUPVIS-E)
- Operations concept defined
- Scenario for crew drafted
- Payload developer:
 - Rover control software under development
 - Additional functionalities for Bridget to be implemented
- OBT to be developed


Extra: Remaining SUPVIS-E activities

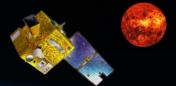
- Session 1: Solar array extraction & small payload retrieval
 - Trouble with the grasp command
 - Workaround has been found -> Manual arm control widget
 - Additional Malfunction PODF needed
 - Not ready to be executed in Inc46
 - Possible rollover candidate for Inc47/48
 - Can be performed by any crew member
- Session 3: Antenna deployment
 - Proposed to rollover to Inc49
 - Permanent fix for SPR-1431 required (automatic grasp function)

Belgian User Support & Operations Centre

Questions?

Belgian User Support & Operations Centre

Backup Slides

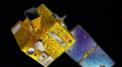


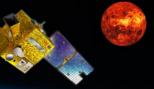
The METERON Project

- Multi-purpose End-To-End Robotic Operations Network
- Goals:
 - Providing end-to-end in-orbit demonstration of potential future exploration scenarios, involving humans and robots (operations)
 - Validate the concept of real-time control of a robot on a planetary surface, from an manned orbiter with force and stereo vision feedback (robotics)
 - In-orbit testing and validation of novel communication techniques, such as **Disruption/Delay Tolerant Network** (communication)

SUPVIS-M ground requirements

- Rover:
 - Bridget rover at Stevenage
 - Rover will be upgraded with camera system (video feedback and localisation)
- Ground sites:
 - DTN nodes
 - MOE software for end-to-end monitoring and rover commanding from ground
- Voice communication:
 - S/G communication: Voice forwarding to Stevenage using the PABX system




SUPVIS-M HW & SW

- Re-use of hardware and communication infrastructure of SUPVIS-E
 - 2x T61p laptop (1 for Rover control SW, 1 for Video)
 - Use of Ku-FWD for command and telemetry
- Rover control SW:
 - Reuse of MOPS software of OPSCOM-2
 - Already installed on the laptops
 - A SW upgrade will be needed
- Ground SW: MOE (METERON Operations Environment)

SUPVIS-M Bridget

-Built by Astrium UK -representative of the size, actuation capability and speed of a typical Martian rover platform (ExoMars prototype) -6 wheel drive, 4 wheel

steering

spaceappiications

