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Motivation and Focus 

u Not able to generate accurate Space Launch System (SLS) 
base heating design environments without ground test due to:  

• Historic semi-empirical models based on different aft 
configurations (e.g. Shuttle, Saturn) than SLS  

• Lack of analytical solutions to predict such complex flow physics 

u NASA MSFC and CUBRC developed a 2% scale SLS propulsive 
wind tunnel test program1,2 to obtain base heating test data 
during ascent. 

• Such a test program has not been conducted in 40+ years since 
the Shuttle Program  

• Dufrene et al paper3 described the operation, instrumentation 
type and layout, facility and propulsion performance, test matrix 
and conditions and some raw test results.  

 
u This paper focuses on the SLS base flow physics and 

environment results being used to design the thermal 
protection system (TPS).  
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SLS Vehicle and Base Region 

RSRMV = reusable solid rocket motor – 5 segment 
BHS = base heat shield 
EMHS = engine mounted heat shield 
BSM = booster separation motor 
BT = boat tail 
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SLS Mission Profile 

Morris (2015)4 3 
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Base Flow Physics 

Mehta et al (2013)5 
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SLS Base Flow Physics 
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BHS Heating Contour Plots 
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EMHS Heating Contour Plots 
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Base Pressure Spatial Profiles 
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Base Heating Spatial Profiles 
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LWIR Imaging 
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MWIR Imaging 
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SLS and Shuttle Orbiter Base Configurations 

u  ATA-002 SLS Core Base 
(Wind Tunnel) 

u  Space Shuttle Orbiter Base 
(STS-124) 

BOTH IMAGES ARE TO SCALE 

u  SLS RS-25 nozzle spacing within the base is about two times the 
spacing for the Shuttle Orbiter base 

RS-25 
Nozzle 
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Base Pressure – Altitude Profile 
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Base Heating – Altitude Profile: BHS Center 

u  Scaled test data, mean and 
mean + 1 sigma data profiles  

u   Mean data and prediction 
profiles 
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Base Heating – Altitude Profile: EMHS 

u  Scaled test data, mean and 
mean + 1 sigma data profiles  

u   Mean data and prediction 
profiles 
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Base Heating – Altitude Profile: SRB Base 

u  Scaled test data, mean and 
mean + 1 sigma data profiles  

u   Mean data and prediction 
profiles 
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Base Heating – Altitude Profile: RS-25 Nozzle 

u  Scaled test data, mean and 
mean + 1 sigma data profiles  

u   Mean data and prediction 
profiles 
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SLS Base Design Environment Methodology 
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Base Heating Scaling Methodology 
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SLS Vehicle Maneuvers 
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Design Environment: BHS Center 

u  Post-test and pre-test 
convective heating design 
environments  

u   Post-test and pre-test total 
heating design environments 
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Design Environment: EMHS 

u  Post-test and pre-test 
convective heating design 
environments  

u   Post-test and pre-test total 
heating design environments 
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Design Environment: SRB Base 

u  Post-test and pre-test 
convective heating design 
environments  

u   Post-test and pre-test total 
heating design environments 
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Design Environment: RS-25 Nozzle 

u  Post-test and pre-test 
convective heating design 
environments  

u   Post-test and pre-test total 
heating design environments 
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Design Environment: Base Heat Load 

u  Heat load drives the TPS thickness and heating rate drives TPS type 

u  Highest heat load deviation from the pre-test environments are: 
BHS, EMHS in-board and RS-25 nozzle HB #3 
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Thermal Analysis: BHS and EMHS 
u  Preliminary thermal assessment 

suggests that high EMHS heat 
loads leads to exceedance in 
the in-board thermal blanket 
temperature requirement  

 
u  High BHS heating rates and loads 

leads to higher TPS ablation as 
compared to pre-test 
environments 

TPS left at 
MECO 

Numerical 
Predictions 
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Conclusions 

u Successfully established a working theory of the flow physics 
and generated base heating design environments  

u SLS base flow physics is dependent on: 
•  Plume flow physics coupling between RSRMV and RS-25 plumes 
•  RS-25 and RSRMV plume dynamics with freestream  
•  RS-25 nozzle spacing 
•  RSRMV proximity to base  
•  RSRMV and RS-25 thrust profiles 

u Design environments show highest heating rate and heat 
loads at the: 

•  BHS 
•  EMHS in-board  
•  RS-25 nozzle base  

u NASA and Boeing are currently working on SLS base TPS 
design 
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