2016 AIAA SciTech Conference, San Diego, CA

National Aeronautics and Space Administration

AIAA 2016-0547

SPACE LAUNCH SYSTEM

Date: 1/5/2016

Base Heating Test: Environments and Base Flow Physics

Manish Mehta, Kyle Knox, Mark Seaford NASA Marshall Space Flight Center (MSFC) Aerosciences

Aaron Dufrene CUBRC Inc. Aerosciences

Motivation and Focus

- Not able to generate accurate Space Launch System (SLS) base heating design environments without ground test due to:
 - Historic semi-empirical models based on different aft configurations (e.g. Shuttle, Saturn) than SLS
 - Lack of analytical solutions to predict such complex flow physics
- NASA MSFC and CUBRC developed a 2% scale SLS propulsive wind tunnel test program^{1,2} to obtain base heating test data during ascent.
 - •Such a test program has not been conducted in 40+ years since the Shuttle Program
 - Dufrene et al paper³ described the operation, instrumentation type and layout, facility and propulsion performance, test matrix and conditions and some raw test results.
- This paper focuses on the SLS base flow physics and environment results being used to design the thermal protection system (TPS).

SLS Vehicle and Base Region

SLS Mission Profile

Base Flow Physics

Mehta et al (2013)⁵

SLS Base Flow Physics

BHS Heating Contour Plots

EMHS Heating Contour Plots

Base Pressure Spatial Profiles

Base Heating Spatial Profiles

LWIR Imaging

MWIR Imaging

SLS and Shuttle Orbiter Base Configurations

SLS RS-25 nozzle spacing within the base is about two times the spacing for the Shuttle Orbiter base

Base Pressure – Altitude Profile

SLS

www.nasa.gov/sls

22

Base Heating – Altitude Profile: BHS Center

Scaled test data, mean and mean + 1 sigma data profiles Mean data and prediction profiles

Base Heating – Altitude Profile: EMHS

Scaled test data, mean and mean + 1 sigma data profiles

Mean data and prediction profiles

Base Heating – Altitude Profile: SRB Base

Scaled test data, mean and mean + 1 sigma data profiles

Mean data and prediction profiles

Base Heating – Altitude Profile: RS-25 Nozzle

Scaled test data, mean and mean + 1 sigma data profiles

Mean data and prediction profiles

SLS Base Design Environment Methodology

Base Heating Scaling Methodology

 $Nu_{h} = C \operatorname{Re}_{h}^{m} \operatorname{Pr}_{h}^{n}$ Assuming: (1) $Pr_{test} = Pr_{flight}$ (O/F ratio matched) (2) $T_{g-test} = T_{g-flight}$ (O/F ratio matched) $(3)\left(\frac{P_{lip}}{P_{\infty}}\right)_{taut} \approx \left(\frac{P_{lip}}{P_{\infty}}\right)_{diabat}$ (4) $P_{hase} = k_2 P_c$ (Valid based on theory) $\dot{q} \propto k_1 P_b^m D^{m-1} = k_1 k_2 P_c^m D^{m-1}$ (assuming $P_b = k_2 P_c^1$) $\frac{\dot{q}_{test}}{\dot{q}_{flight}} \propto \left(\frac{P_{c-test}}{P_{c-flight}}\right)^m \left(\frac{D_{test}}{D_{flight}}\right)^{m-1}$ $h_{flight} = \frac{q_{flight}}{T_{r,test} - T_{corr}}$ $T_{r,flight} \sim T_{r,test}$ TDLAS - Parker et al Paper⁶ $h_{flight}, T_{r,flight}, \left(\frac{P_{lip}}{P_{cr}}\right)$ + Trajectory Information $\Rightarrow \dot{q}_{conv,flight}$

ATA-002 data scaled to flight conditions using classic Colburn scaling methodologies⁷

Reynolds exponent is within a narrow band of values of 0.88 and 0.82

Flow	m exponent	Re	
Incompressible*	0.844	1E5 – 1E9	
Compressible**	0.883	1E5 – 1E9	
Incompressible*	0.822	1E5 – 1E7	
Compressible**	0.861	1E5 – 1E7	
Re Scale Tests***	0.820	4E3 – 1E4	

*Mean Value

**Karman-Schoenherr Skin Friction Law with Spalding and Chi Compressibility Correction

*** Difficult to estimate edge conditions and flow potentially tripped due to complex plume interactions

Recommend a mean Reynolds exponent (m) of 0.85 – most representative exponent for expected Re range

SLS Vehicle Maneuvers

SLS-10005 TD3H

Design Environment: BHS Center

Post-test and pre-test convective heating design environments

Design Environment: EMHS

Post-test and pre-test convective heating design environments

Design Environment: SRB Base

Post-test and pre-test convective heating design environments

Design Environment: RS-25 Nozzle

Post-test and pre-test convective heating design environments

Design Environment: Base Heat Load

Heat load drives the TPS thickness and heating rate drives TPS type

 Highest heat load deviation from the pre-test environments are: BHS, EMHS in-board and RS-25 nozzle HB #3

Base Regions	Normalized Values		
	Post-Test Heat Load	Pre-Test Heat Load	Post/Pre Heat Load Ratio
BHS Center	9.9	6.6	1.5
EMHS 45-deg In-Board (phi = 45 deg)	9.4	5.0	1.9
EMHS 45-deg In-Board (phi = 0 deg)	8.2	2.4	3.5
SRB In-Board Base	4.1	4.7	0.9
RS-25 In-Board Nozzle Lip	4.9	11.2	0.4
RS-25 In-Board Nozzle Hat-Band 3	10.0	5.1	2.0

Thermal Analysis: BHS and EMHS

Conclusions

- Successfully established a working theory of the flow physics and generated base heating design environments
- SLS base flow physics is dependent on:
- Plume flow physics coupling between RSRMV and RS-25 plumes
- RS-25 and RSRMV plume dynamics with freestream
- RS-25 nozzle spacing
- RSRMV proximity to base
- RSRMV and RS-25 thrust profiles
- Design environments show highest heating rate and heat loads at the:
- BHS

SLS

EMHS in-board

design

RS-25 nozzle base

NASA and Boeing are currently working on SLS base TPS

References

- ¹Mehta, M. et al (2014), Space Launch System (SLS) Pathfinder Test Program: Sub-scale booster solid rocket motor development for short-duration testing, NASA MSFC Spacecraft & Vehicle Systems Department EV33 Tech. Memo 14-024, Aerosciences Branch (EV33), Huntsville, AL, December 2014.
- ²Mehta, M. et al (2014), Space Launch System (SLS) Pathfinder Test Program: Sub-scale core-stage rocket engine development for short-duration testing, NASA MSFC Spacecraft & Vehicle Systems Department EV33 Tech. Memo 14-023, Aerosciences Branch (EV33), Huntsville, AL, October 2014.
- ³Dufrene, A.T. et al (2016), Space Launch System Base Heating Test: Experimental Operations and Results, AIAA 2016-0546, 2016 AIAA SciTech Conference, San Diego, CA.
- ⁴Morris, C.I. (2015), Space Launch System Ascent Aerothermal Environments Methodology, AIAA 2015-0561, 2015 AIAA SciTech Conference, Kissimmee, FL.
- ⁵Mehta et al (2013), Numerical Base Heating Sensitivity Study for a Four-Rocket Engine Core Configuration, JSR, Vol. 50, No. 3.
- ⁶Parker, R. et al (2016), Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy, AIAA 2016-0548, 2016 AIAA SciTech Conference, San Diego, CA.
- ⁷Bergman, T.L., A.S. Lavine, F.P. Incropera and D.P. DeWitt (2015), <u>Fundamentals of Heat</u> and <u>Mass Transfer</u>, John Wiley & Sons, Inc., Hoboken, NJ.

Acknowledgements

- NASA MSFC Aerosciences Aerothermodynamics Team
- NASA MSFC Propulsion Thermal Analysis Branch
- CUBRC Aerosciences/LENS Team
- NASA SLS Project Office

Contact Info:

Manish Mehta, Ph.D. Aerothermodynamics/Aerosciences Branch NASA Marshall Space Flight Center (MSFC) MS 3421/EV33 MSFC, AL 35812 256-544-0076 manish.mehta@nasa.gov