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Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers
above the energy of the state itself [1]. Tunneling has been hypothesized as an advantageous physical
resource for optimization [2–6]. Here we present the first experimental evidence of a computational
role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We
developed a theoretical model based on a NIBA Quantum Master Equation to describe the multi-
qubit dissipative cotunneling effects under the complex noise characteristics of such quantum devices.
We start by considering a computational primitive, the simplest non-convex optimization problem
consisting of just one global and one local minimum. The quantum evolutions enable tunneling to
the global minimum while the corresponding classical paths are trapped in a false minimum. In our
study the non-convex potentials are realized by frustrated networks of qubit clusters with strong
intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed
in the “critical” phase during the evolution where quantum tunneling “decides” the right path to
solution. In a later stage dissipation facilitates the multiqubit cotunneling leading to the solution
state. The predictions of the model accurately describe the experimental data from the D-Wave
II quantum annealer at NASA Ames. In our computational primitive the temperature dependence
of the probability of success in the quantum model is opposite to that of the classical paths with
thermal hopping. Specifically, we provide an analysis of an optimization problem with sixteen qubits,
demonstrating eight qubit cotunneling that increases success probabilities. Furthermore, we report
results for larger problems with up to 200 qubits that contain the primitive as subproblems.

I. INTRODUCTION

Quantum tunneling was discovered in the late 1920s
to explain field electron emission in vacuum tubes.
Today this phenomenon is at the core of many es-
sential technological innovations such as the tunnel
field-effect transistor, field emission displays and the
scanning tunneling microscope. Tunneling is also at
the heart of energy and charge transport in biological
and chemical processes. Recently cotunneling effects
involving multiple quantum mechanical particles have
been used to develop single electron transistors and
hypersensitive measurement instruments.

Quantum tunneling, in particular for thin but high
energy barriers, has been hypothesized as an advan-
tageous mechanism for quantum optimization [2–6].
In classical simulated annealing or cooling optimiza-
tion algorithms, the corresponding temperature pa-
rameter must be raised to overcome energy barriers.
But if there are many potential local minima with
smaller energy differences than the height of the bar-
rier, the temperature must also be lowered to distin-
guish between them so the algorithm can converge to
the global minimum. Quantum tunneling is present
even at zero-temperature. Therefore, for some energy
landscapes, one might expect that quantum dynam-
ical evolutions can converge to the global minimum
faster than classical optimization algorithms. Quan-
tum annealing [2, 3] is a technique inspired by classical
annealing but designed to take advantage of quantum
tunneling. Single qubit quantum tunneling for a pro-
grammable annealer has been demonstrated experi-
mentally in Ref. [7], and two qubit cotunneling has
been detected indirectly using microscopic resonant

tunneling in Ref. [8] (see below).

FIG. 1. Quantum annealing functions A(s) and B(s). The
function A(t) is defined as twice the median energy differ-
ence between the two lowest eigenstates of the experimen-
tally superconducting flux qubit. The function B(s) is de-
fined as 1.41 pico henries times the square of the persistent
current I2p(s), as explained in App. II B.

The state evolution in transverse field quantum an-
nealing is governed by a time dependent Hamiltonian
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of the form [9]

H0(s) = A(s)HD +B(s)HP (1)

HD = −
∑
µ

σxµ (2)

HP = −
∑
µ

hµσ
z
µ −

∑
µν

Jµνσ
z
µσ

z
ν . (3)

Here HD is the driver Hamiltonian, HP is the problem
Hamiltonian whose ground state is the solution of an
optimization problem of interest, {σxµ, σzµ} are Pauli
matrices acting on spin µ, s = t/tqa is the annealing
parameter, and tqa is the duration of the quantum
annealing process. The functions A(s) and B(s) used
in the rest of the paper are shown in Fig. 1. The
Hamiltonian path H0(s) describes an evolution of ef-
fective 2-level spin systems (qubits) from an initial
phase with a unique ground state to a final Hamilto-
nian with eigenstates aligned with the z quantization
axis. In the initial unique ground state all the qubits
are aligned with the effective transverse magnetic field
in the x direction. See Appendix A for a more com-
plete derivation of the single qubit Hamiltonian and
the parameteres the experimental system considered
in this paper.

Closed system quantum adiabatic evolutions gov-
erned by the time-dependent Hamiltonian given in
Eq. (1) will arrive at the final ground state of the
problem Hamiltonian if the total evolution time is
large compared to the inverse minimum energy gap
along the Hamiltonian path [9]. In this paper we shall
analyze the performance of a quantum annealing de-
vice with superconducting flux qubits [7, 10, 11]. The
qubits are coupled inductively in a connectivity graph
that is formed by a grid of cells with high internal con-
nectivity. The qubits are subject to interaction with
the environment with the dominant noise source being
spin diffusion at the superconductor insulator inter-
face [12–14]. This is known to produce control errors,
energy level broadening as well as thermal excitation
and relaxation [15, 16]. The noise characteristics of
individual qubits have been studied in macroscopic
resonant tunneling experiments [17]. We show nev-
ertheless that even under such conditions the device
performance can benefit from multiqubit cotunneling
of strongly interacting qubit clusters. This is of rele-
vance for current programmable quantum annealers,
such as the D-Wave II chip at NASA Ames.

In this work we design an Ising model implementa-
tion with 16 qubits of a computational primitive, the
simplest non-convex optimization problem consisting
of just one global and one local minimum. The final
global minimum can only be reached by traversing an
energy barrier. We develop a NIBA Quantum Master
Equation which takes high and low frequency noise
into account. Our comprehensive open quantum sys-
tem modeling, with close agreement with D-Wave ma-
chine output, demonstrates how cotunneling can exist
and play a functional role in presence of both Ohmic
and strong 1/f noise components affecting coherence
of the flux qubits. Independent of specific choices in
the quantum models or the classical models, the pre-
diction is that the probabilities to find the system in

the lowest energy state should decrease with increas-
ing temperature for a quantum system but should in-
crease for a classical system. This is indeed observed,
demonstrating eight qubit cotunneling that increases
success probabilities. We compare with physically
plausible models of the hardware that only employ
product states which do not allow for multiqubit tun-
neling transitions. Experimentally we find that for
this situation the D-Wave II processor returns the so-
lution that minimizes the energy with higher probabil-
ity than these models. Beyond the original 16 qubit
probe problem we also explore larger problems that
contain multiple weak-strong cluster pairs.

II. A PRIMITIVE “PROBE” PROBLEM
CHARACTERIZED BY A DOUBLE WELL

POTENTIAL

A. The quantum Hamiltonian

The archetypal primitive to study quantum tunnel-
ing is a double-well potential: two local minima sepa-
rated by an energy barrier. Our aim is to distinguish
quantum tunneling from thermal activation in a model
using classical paths. Classical paths are limited to
local spin vector dynamics over product states to get
over the energy barrier. In contrast, the signature of a
quantum system is that entangled states are available
as well. We utilize qubit networks of the D-Wave 2
quantum annealer chip at NASA Ames to design time
dependent asymmetric double well potentials where a
classical path continuously connects the initial global
minimum to the final false minimum. In this way one
can study how the system escapes the local minimum
and traverses the energy barrier to reach the global
optimum. We will see that quantum tunneling results
in a different final probability of success than the cor-
responding classical dynamics over classical paths. We
compare the experimental data from the device with
numerical simulations of classical paths and with the
predictions of a comprehensive analytical model for
dissipative multiqubit cotunneling. Based on the re-
sults of this comparison, we establish the functional
role of tunneling in the evolution on a programmable
quantum annealer.

We now detail how the double well potential and
time evolution can be constructed in the case of net-
work graphs with finite connectivity. We will focus on
the particular case of the so-called Chimera graph that
connects the qubits in the current D-Wave II architec-
ture, although similar constructions can be applied to
more general network architectures. We choose our
double well primitive probe problem to be the one de-
picted in Fig. 2. We use two Chimera cells, each with
n = 8 qubits. We find it useful during our analysis
to keep n explicit. We will choose equal local fields
for the spins within each cell. We also choose all the
couplings to be equal and ferromagnetic. There are
n2/4 intra-cell couplings and n/2 inter -cell couplings.
The spins within each cell tend to move together as
an homogenous cluster because flipping only one spin
rises the energy by an amount ∝ nJ which is much
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FIG. 2. The probe problem under study, consisting of
16 qubits in two unit cells of the so-called Chimera graph.
All qubits are ferromagnetically coupled and evolve as two
distinct qubit clusters. At the end of the annealing evo-
lution the right cluster is strongly pinned downward due
to strong local fields acting on all qubits in that cell. The
local magnetic field h1 in the left cluster is weaker how-
ever, and serves as a bifurcation parameter. For h1 < J/2
the left cluster will reverse its orientation during the an-
nealing sweep and eventually align itself with the right
cluster. Note the permutation symmetry in each column
which allows us to adopt the large spin description.

greater than the energy of the inter-cell bond ∝ 2J .
The problem Hamiltonian is of Ising form

HP = HP
1 +HP

2 +HP
1,2 (4)

HP
k = −J

∑
〈j,j′〉∈intra

σzj,kσ
z
j′,k −

n∑
j=1

hk σ
z
j,k (5)

HP
1,2 = −J

∑
j∈inter

σzj,1σ
z
j,2 . (6)

The index k ∈ {1, 2} denotes the Chimera cell, the
first sum in (5) goes over the intra-cell couplings de-
picted in Fig. 2, and the second sum goes over the
inter -cell couplings corresponding to j ∈ (n/2 + 1, n)
in Fig. 2; hk denotes the local fields within each cell.

Toward the end of quantum annealing the prob-
lem Hamiltonian HP is dominating the evolution and
〈σzj,k〉 ' ±1 where 〈. . .〉 denotes a quantum mechan-
ical average. We choose the local fields to point in
opposite directions. For simplicity we set the largest
magnitude field h2 = −J (the largest magnitude
field). We further choose J > h1 > 0. If h1 < J/2
then the global minimum corresponds to the qubits
in both clusters polarized in the same direction as the
largest field, h2. There also exists a “false” minimum
corresponding to the clusters oriented in the opposite
directions (each along its own local field).

We now explain the onset of the frustration in this
system. We observe that at the beginning of quantum
annealing

〈σzj,k〉 ' hk B(s)/A(s), B(s)/A(s)� 1 . (7)

The Ising coupling terms in the problem Hamiltonian
(5) are quadratic while the local field terms are lin-
ear in z-polarizations. Therefore at the beginning of

quantum annealing the effect of the local z-fields dom-
inates that of the inter -cell Ising couplings. According
to (7), because h1 and h2 have the opposite signs so
will the z-projections of the spins 〈σzj,k〉 in the two
clusters early in the evolution.

A key observation is that in the absence of quan-
tum tunneling and thermal hoping the spin projection
of the two clusters stay opposite during the evolution
arriving to the false minimum with residual energy
relative to the global minimum equal to n(J − 2h1).
The system will get trapped into the false minimum.
To escape it all spins in the left cluster must flip the
sign which requires going over the barrier top. At the
tipping point of the barrier the left cluster has zero to-
tal z-polarization and therefore the barrier grows with
the ferromagnetic energy of the cluster (n/2)2J . For
sufficiently large n the barrier height O(n2) is much
greater than the residual energy O(n). It will be
shown below that in certain region of the annealing
parameter s all qubits in the left cluster will tunnel
in a concerted motion under the energy barrier sepa-
rating the two potential wells that correspond to the
opposite z-polarizations of the cluster.

Next, we discuss an approximation which reduces
the size of the Hamiltonian matrix for the 2 unit cell
problem from 22n to (n/4 + 1)4. We introduce to-
tal spin operators for each column of a unit cell (cf.
Fig. 2)

Sαk,1 =
1

2

n/2∑
j=1

σαj,k , Sαk,2 =
1

2

n∑
j=n/2+1

σαj,k , (8)

where α ∈ x, y, z, and k ∈ {1, 2} denotes the left and
right Chimera cells. Because the intra-cell Hamilto-
nians (5) and the driver Hamiltonian are symmetric
with respect to qubit permutations they can be writ-
ten in terms of the total spin operators

HP
k = −4JSzk,1S

z
k,2 + 2hkS

z
k (9)

HD = −2
∑

k,m=1,2

Sxk,m .

We note that the inter-cell HamiltonianHP
1,2 in Eq. (6)

does not possess the qubit permutation symmetry.
However, as explained above, the qubits in each cell
tend to evolve as homogenous clusters. Therefore one
can approximate the inter-cell Hamiltonian in terms
of the total spin operators for the columns

HP
1,2 ' −

8

n
JSz1,2S

z
2,2 . (10)

We observe that the system Hamiltonian commutes
with the total spin operators S2

k,m =
∑
α∈x,y,z(S

α
k,m)2.

Given that all qubits in the initial state are polarized
along the x-axis this restricts the evolution to the sub-
space of maximum total spin values n/4 for each col-
umn. This subspace is spanned by the basis vectors
|n/4,mk,m〉 corresponding to the definite projections
of column spins on the z axis mk,m = −n/4, . . . , n/4.
As a measure of the error incurred by this approxi-
mation, it can be shown that the two lowest energy
levels are within 0.1% of the exact values for the case
of interest, n = 8.
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FIG. 3. Gap of the quantum Hamiltonian for h1 = 0.44
as a function of the annealing parameter. The continuous
line is the energy difference between the ground state and
the first excited state. The avoided crossing at s = 0.26
corresponds to a minimum gap of 180 MHz. The dashed
line is the energy difference between the ground state and
the second excited state.

B. Effective energy potential the classical paths
of product states

We now derive the effective potential over product
states used to study the difference between thermal
hoping among classical paths, and quantum tunnel-
ing in the quantum models. This will also serve to
clarify the tunneling picture described above. We first
transform to a representation that contains an explicit
momentum operator. We think of each cluster k as
a “particle” with the coordinate proportional to its
total spin z projection

∑
j=1,2 S

z
k,j . Because the x-

component of the total spin of the cluster does not
commute with the z-component it is naturally associ-
ated with the momentum that causes the particle to
move. This allows us to think of the z-component of a
large spin as a particle moving in a slowly time-varying
potential, formalizing the cartoon pictures sometimes
drawn to illustrate quantum annealing that show a
particle escaping a local minimum in a continuous po-
tential via tunneling.

The canonically conjugated coordinate and mo-
menta operators can be naturally introduced within
the WKB framework (see App. B)

Sz1,k + Sz2,k =
n

2
qk (11)

Sx1,k + Sx2,k ≈
n

2

√
1− q2

k cos pk . (12)

where [q, p] = i(2/n) and 2/n � 1 plays a role of
Planck constant in traditional WKB. To the leading

order in 1/n the Hamiltonian becomes

HWKB(q1, q2, p1, p2, s) = −nA(s)
∑
k=1,2

√
1− q2

k cos pk

+ nB(s)J
∑
k=1,2

(
hk
∑
j

qk − nq2
k/4
)
− n

2
B(s)J q1 q2 .

(13)

WKB theory based on this Hamiltonian describes
eigenstates and eigenvalues with logarithmic accuracy
in the asymptotic limit n� 1. It also gives a reason-
able estimates already for n = 8 (see App. B).

We will now consider the potential corresponding
to a low energy description with very low momentum

U(q1, q2, s) = HWKB(q1, q2, 0, 0, s) .

The same potential is obtained in Ref. [5] projecting
the Hamiltonian of large spin operators Eqs. (9), (10)
over spin coherent states, which are product states.
The different panels in Figure 4 depict the potential
U(q1, q2) for different values of the annealing param-
eter s with local field h1 = 0.44. Initially (s = 0)
there is only a global minimum at q1 = q2 = 0 corre-
sponding to all spins aligned with the x-direction. As
s grows the minima begins to move to the left corner
(−1, 1) corresponding to the opposite orientations of
the clusters. This effect was already mentioned above
in the general context. The terms in the effective po-
tential corresponding to the local fields hk are linear
in qk, and dominate the Ising coupling energy between
the large spins that is is quadratic in qk for |qk| � 1.
For larger values of s the Ising terms begin to com-
pete with the local fields and the plateau is formed in
the vicinity of q1 = 0 following the local bifurcation
of U and giving rise to a new minimum corresponding
to the ferromagnetic alignment of the two clusters.
At some value sc the two minima coexists with the
same energy. For s > sc the minimum correspond-
ing to the ferromagnetic cluster alignment has a lower
energy, smoothly connecting to the solution state at
the end of quantum annealing corresponding to the
global minimum of the potential U(q1, q2, s = 1) at
q1 = q1 = 1.

In a closed system quantum adiabatic evolution al-
gorithm the system tunnels from the old global mini-
mum to the new one in the vicinity of sc [5]. It tun-
nels under the barrier whose top approximately cor-
responds to zero z-magnetization q1 = 0. The tunnel-
ing corresponds to the avoided crossing between the
two lowest energy levels of the quantum Hamiltonian
H0(s) of Eq. (1) shown in Fig. 3. During the tun-
neling the total spin of the left cluster switches its
direction. The switching manifests itself in Fig. 5 as a
steep change in s-dependence of the quantum mechan-
ical average of the the left cluster polarization 〈q1〉 in
the instantaneous ground state. In contrast, the right
cluster which does not tunnel displays a smooth be-
havior of its average polarization 〈q2〉.

In classical dynamical evolutions, when tunneling is
not possible, the system will continue to reside in the
initially global minimum emanating from the point
(0, 0). Fig. 6 shows the energies of the two classical
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FIG. 4. The five snapshots in this figure show how the energy landscape evolves and a double-well potential is formed
during annealing schedule. The 3D plot also depicts such evolution as a function of an effective orientation angle for the
large spins. The minimum that forms first would trap a classical particle moving in this potential. Later in the annealing
evolution a second minimum forms and eventually becomes the global minimum. To reach this global minimum the
system state has to traverse the energy barrier between them. The origin of this bifurcation is explained in the text.

FIG. 5. Plot of 〈q1〉 for the quantum ground state and
first excited state as a function of the annealing parameter
s for h1 = 0.44. We also plot the value of the parameter
q1 along the paths corresponding to the false and global
minima for the effective energy potential. The correspon-
dence is good, except at the avoided crossing where the
quantum states are entangled.

paths corresponding to the two minima of the energy
potential U(q1, q2, s) for h1 = 0.44. Classical dynam-
ical evolutions will get trapped in the false minimum
path due to the bifurcation seen in this figure. Clas-
sical trajectories can only reach the global minimum
through thermal excitations. In Figure 5 we also show

FIG. 6. Bifurcation for h1 = 0.44. The energies of the
paths of the double-well minima and the height of the ef-
fective energy barrier in GHz are plotted in GHz. We sub-
tract the instantaneous energy of the final false minima.
The path corresponding to the global minimum appears as
a bifurcation with higher energy. When this path crosses
with the path of the final false minimum, the height of the
energy barrier is substantial.

the value of the parameter q1 corresponding to the
local minima of U(q1, q2, s) as a function of the an-
nealing parameter s. The parameter q1 for the clas-
sical path connecting to the final false minimum first
aligns with the quantum ground state and later aligns
with the quantum first excited state. This path starts
at the point (0, 0). The bifurcation path correspond-
ing to the global minimum first appears with a defi-
nite but small q1, and later aligns with the quantum
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ground state after the avoided crossing.

III. MODELING THE ANNEALING
DYNAMICS

A. Open quantum system models

Under realistic conditions, the performance of a
quantum annealer as an optimizer can be strongly in-
fluenced by the coupling to the environment. In order
to capture this effect we present a phenomenological
open quantum system model by incorporating the ex-
perimental characterization of the noise that was per-
formed to date on D-Wave devices (the experimental
platform for the present investigation).

We shall assume that each flux qubit is coupled
to its own environment with an independent noise
source; this assumption is consistent with experimen-
tal data [8]. We separate the bath excitations into
two parts. Excitations with frequencies slower than
the annealing rate in our experiments (5 KHz) will
be treated as a “static noise” whose effect can be in-
cluded by an appropriate averaging of the success rate
over the local field errors (∼ 5% for the D-Wave II
chip). The excitations with higher frequencies will be
modeled as a bath of harmonic oscillators. This ap-
proach is quite general, independent of the true phys-
ical source of the noise, being valid under the condi-
tion that the bath is in thermal equilibrium, can be
treated within the conditions of linear response theory,
and has Gaussian fluctuations [19]. The correspond-
ing system-bath Hamiltonian is

H(s) = H0(s) +
1

2

2n∑
µ=1

σzµQµ(s) +HB , s = t/tqa.

(14)
Hereafter we will use for brevity a single index µ for
single-qubit Pauli matrices instead of the double in-
dexation employed in Sec. II. In the equation above,
tqa is the duration of the quantum annealing process,
H0(t) is the Hamiltonian for an N -qubit system (as
in Eq. 1), HB is the standard Hamiltonian of the
bosonic bath, and Qµ(s) is a bosonic noise operator
that couples the µth qubit to its environment. The
coupling parameters of bosonic bath operator Qµ(s)
depend on the annealing parameter s through the per-
sistent current (see App. A). In what follows we use
the notation Qµ and make the dependence on s im-
plicit for simplicity.

The properties of the system’s noise are determined
by the noise spectral density S(ω):∫ ∞

0

eiωt〈eiHBtQµe−iHBtQν〉 = S(ω)δµν , (15)

where the inclusion of the Kronecker delta function
δµν is a consequence of the assumption of independent
baths. The temperature dependence of the spectral
density is given by

S(ω) = ~2J(ω)(n̄(ω) + 1) , (16)

where n(ω) = [exp(βω)−1]−1 is the Planck number at
temperature T = ~/kBβ and J(ω) is the temperature-
independent spectral function [20] that can be treated
as an antisymmetric function of frequency, J(ω) =
[S(ω)− S(−ω)]/~2.

The effect of the Ohmic noise on multiqubit quan-
tum annealing was studied numerically in [21]. This
work assumed weak system-environment coupling and
utilized the Redfield formalism to derive the quantum
Markovian master equation in the basis of the (instan-
taneous) adiabatic eigenstates of the qubit Hamilto-
nian. It was built on earlier studies of open-system
quantum annealing in [22–26] where similar assump-
tions were made.

In addition to Ohmic noise, an important role
is played by a low-frequency noise of the 1/f type
[27, 28] produced by the spins in the amorphous parts
of the qubit device [12, 14, 29]. In current D-Wave
chips this noise is coupled to the flux qubit relatively
strongly as was shown in recent experiments [17]. Ad-
ditionally, our analysis shows that noise effects are
significantly enhanced by collective effects associated
with multiqubit cotunneling. While future genera-
tions of quantum annealer chips will hopefully have
reduced levels of flux qubit noise, it will still produce
a highly nonlinear effect for sufficiently a large number
of cotunneling qubits.

In recent years, the noise spectrum of flux qubits
was studied using a variety of approaches that includes
dynamical decoupling schemes [30], free-induction
Ramsey interference [31], coherent spectroscopy with
strong microwave driving [32], and macroscopic reso-
nant tunneling (MRT) techniques [17, 33].

In MRT experiments the qubit state is probed in a
way that is most similar (compared with other meth-
ods) to the quantum annealing process itself, with-
out using high-frequency driving and involving slow
tunneling dynamics of each qubit within its group-
state manifold. While the exact microscopic models
of low-frequency noise are not well understood [12, 14]
its effect on system evolution in MRT experiments
appeared to be well described by phenomenological
models [17, 33]. There, the quantity of interest is
the incoherent-tunneling rate between the “up” and
“down” eigenstates of the single flux qubit Hamilto-
nian − 1

2 (εσz+∆σx) as a function of the bias ε. In [34],
the Gaussian form of the MRT line is described with a
noise model whose spectral density is sharply peaked
at low frequency. In [17], this model is extended by
attributing the linear form of the tails in the MRT line
shape to the high-frequency (Ohmic) part of the noise
spectral density. The MRT data collected for small
tunneling amplitudes (∆ < 1 MHz) and in a broad
range of frequencies (0.4MHz − 4 GHz) and tempera-
tures (21 mK − 38mK) are surprisingly well described
by a phenomenological “hybrid” noise model

S(ω) = SLF (ω) + SHF (ω), (17)

where the high-frequency part of the noise has a stan-
dard Ohmic form, [35]

JHF (ω) = ηω exp(ω/ωc), (18)

and the low-frequency part is described only by its
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first two cumulants related to the width W and shift
εp of the MRT line:

W 2 =

∫ ∞
0

dω

2π
JLF (ω) coth

~ω
kBT

, (19)

εp =

∫ ∞
0

dω

2π

JLF (ω)

ω
(20)

often called the reorganization energy, i.e. the energy
change of the bath degrees of freedom during an in-
coherent tunneling process. The width W and shift
εp measured in [17] satisfy the thermodynamic rela-

tion W 2 = 2kBT
~ εp which requires that the character-

istic cutoff of the low-frequency noise, ωFL � kBT/~.
The hybrid model uses no information about the noise
spectrum at frequencies below W except the assump-
tion that ~ωLF � W . It is justified because in the
experiments W ∼ KBT [17].

The noise linewidth W = W (s), as probed by a
qubit, depends on the point at which it is taken the
annealling process via a persistent current. In our
study we will use the data from [17] collected on a
D-Wave I device. Similar measurements done in the
D-Wave II chip used here yield similar parameters.

During the quantum annealing the system typically
follows several stages identified in [21] depending on
the magnitude of the instantaneous energy gap be-
tween the ground-state energy E0(s) and the excited-
state energy E1(s) of the control Hamiltonian H0(s),
whose energy spectrum evolves during quantum an-
nealing according to

H0(s)|ψγ(s)〉 = Eγ(s)|ψγ(s)〉. (21)

In the problem studied here with two coupled clusters,
the separation between the ground state to the sec-
ond excited state (> 3GHz) is much greater than the
temperature during the entire course of the quantum
annealing. Therefore the dynamics of the 2n qubit
system can be described using the two lowest-energy
instantaneous eigenstates {|ψ0(s)〉, |ψ1(s)〉}.

At the beginning of quantum annealing, the qubit
Hamiltonian H0 (as in Eq. 1) is dominated by
the driver Hamiltonian term and the energy gap be-
tween the ground state and the first excited state
(' 2A(s) ∼ 5GHz) is very large compared to the
temperature. At that stage the system resides in a
ground state |ψ0(s)〉 with overwhelming probability.
For local fields h1 < J/2, the system evolution goes
through the so-called “avoided-crossing” region at in-
termediate times where E1(s) and E0(s) approach
closely to, and then repel from, each other. (See in-
set in Fig. 3.) This level repulsion occurs due to the
cotunneling of qubits in the left cluster between the
opposite z-polarizations. At the point where the gap
E1(s) − E0(s) reaches its minimum ∆Emin the cor-
responding adiabatic eigenstates are formed by the
symmetric and anti-symmetric superpositions of the
cluster orientations (cf. Fig. 7).

The success of closed-system quantum annealing is
limited by the Landau-Zener transitions away from
the adiabatic group state whose probability decreases
exponentially with the ratio ∆E2

min/vqa of the square
of minimum energy gap to the quantum annealing

FIG. 7. The minimum gap between the ground- and first
excited-state levels ∆Emin = mins∈(0,1)[E1(s) − E0(s)]
(21) during quantum annealing as a function of the
rescaled bias h1/J is shown by the solid green line. The
horizontal boundary of the red-filled area at 324MHz cor-
responds to 15.5mK, which is the lowest temperature in
our experiments. The bias value h1/J = 0.5 corresponds
to zero energy gap, which is achieved at the end of quan-
tum annealing when the eigenstates of H0(tqa) = HP with
parallel and anti-parallel cluster orientations are degen-
erate. The upper inset shows the avoided crossing be-
tween the energy levels E1(s), E0(s) in the weak-strong
cluster problem at h1/J = 0.48. Dashed lines show the
energy levels corresponding to the diabatic basis of states
|φ∗1(s)〉, |φ∗i (s)〉 (29) formed by the rotation of the adia-
batic eigenstates (21) that maximizes the average Ham-
ming distance (25), (28) between the spin configurations.
The lower inset shows the spin configurations in both clus-
ters that dominate the characteristics of the eigenstates
before and after the avoided crossing. During the passage
of the avoided crossing, spins in the left cluster (shown in
black) reverse their orientations.

rate vqa. In our experiments, the quantum anneal-
ing rate is 50 kHz and the error due to Landau-Zener
transitions is very small; it is 1% for the smallest
gap in our study of approximately 5MHz achieved
at h1/J = 0.48, and it becomes completely neg-
ligible for smaller values of h1/J (e.g. 10−10 for
h1/J = 0.46). The minimum gap is less than the tem-
perature, ∆Emin . kBT , for most of the h1/J values
under study (cf. Fig. 7). Therefore the population of
the excited state at the end of quantum annealing is
entirely due to thermal excitation [15, 16, 36].

When the instantaneous energy gap E1(s) − E0(s)
is sufficiently large compare to W (s), the coupling to
environment can be treated as a perturbation. This
regime corresponds to the initial stage of evolution up
to approximately the avoided crossing. In the per-
turbative regime, the transition rate between the first
excited state and a ground state of the control Hamil-
tonian H0(s) is given by Fermi’s golden rule for a



8

FIG. 8. The solid black line shows the dependence of the
effective linewidth of the low-frequency noise h1/2(s)W (s)
on annealing parameter s. The dashed blue line is a plot
of the transition rate (57) ΓFGR10 vs. s calculated in sec-
ond order in spin-boson interaction using Fermi’s golden
rule (22). The solid blue is a plot of the transition rate
Γ10 calculated using NIBA (57). The green line shows
the s-dependence of the energy gap E1(s)−E0(s) between
the two lowest-energy levels during the annealing at 15.5
mK. The lowest temperature in our experiments is shown
by the horizontal red dotted line. All plots correspond to
bias h1 = 0.44J . At the early stage of quantum annealing
h1/2(s)W (s)� E1(s)−E0(s) and ΓFGR10 gives an accurate
description of the dynamics. The inset show the transi-
tion rates ΓFGR10 , Γ10 vs. s using the same units as in the
main plot but showing a greater range of values. Vertical
white lines in the inset and main plot mark the value of
seq = 0.269 where the deviation of the system state from
instantaneous Gibbs distribution is 1%. This deviation
grows very rapidly for greater values of s due to the sup-
pression of the transition rates (cf. Fig. 9). Only the stage
of the quantum annealing with s & seq determines the final
ground state population. One can see that at that stage
h1/2(s)W (s) � Γ10, justifying the NIBA approximation
discussed in the main text.

single-boson process:

ΓFGR
10 (s) = b(s)J(ω10)[n̄(ω10) + 1], (22)

where ω10 = (E1(s)−E0(s))/~ is the Bohr frequency
for the transition and

b(s) =
1

4

2n∑
µ=1

|Z10
µ (s)|2. (23)

Here and below we use the following notation for the
matrix elements:

Zγγ
′

µ (s) = 〈ψγ(s)|σzµ|ψγ′(s)〉, γ, γ′ = 0, 1. (24)

This is an overlap factor that determines how strongly
the transition 1 ↔ 0 is coupled to the environment.
Fig. 9 shows the dependence of b(s) on the annealing
parameter s. We observe a steep exponential fall-off
off this coefficient after the avoided crossing. This
happens because, starting from the avoided cross-
ing region, intra-cell ferromagnetic interaction plays
a substantial role by causing the spins in each unit
cell to move in unison, forming two clusters with total
spin value n/2 each. As can be seen from Fig. 5, the
first two eigenstates |ψ0〉 and |ψ1〉 after the avoided

FIG. 9. Dependence of the overlap factor b on s for
h1 = 0.44J . The two plots correspond to the overlap
coefficient in the adiabatic basis {|ψ0〉, |ψ1〉} and rotated
(diabatic) basis (29). Vertical dashed line indicates the
point where the minimum energy gap is reached (avoided-
crossing). Red, blue, and gray colors indicate the different
stages of the quantum annealing described in the text.

crossing correspond to opposite total spin z- projec-
tions of the left cluster. When s increases, the average
“Hamming distance” between the eigenstates,

h(s) =
1

4

2n∑
µ=1

|Z11
µ (s)− Z00

µ (s)|2, (25)

also increases very steeply as shown in Fig. 10. (We
note that the maximum value of h(s) is proportional
to n.) In that region the transition between the eigen-
states requires qubit cotunneling of a progressively
higher order, leading to an exponential decay of the
overlap coefficient b(s) with s and a steep decelera-
tion of the environment-induced transitions between
the two states, as can be seen from the plot of ΓFGR

10 (s)
in Fig. 8.

FIG. 10. Dependence of the average Hamming distance
between the two lowest-energy eigenstates on s for adi-
abatic basis (|ψ0〉, |ψ1〉) and rotated diabatic basis (29)
for h1 = 0.44J . The vertical dashed line indicates the
point where the minimum energy gap is reached (avoided-
crossing). Red, blue, and gray colors indicate the different
stages of the quantum annealing described in the text.

The fact that qubits within each unit cell tend to



9

move together, forming large spins, amplifies the ef-
fect of the environment on their quantum dynam-
ics. In particular, we will show below that the ef-
fective linewidth of the low-frequency noise as seen
by the two-state system {|ψ1(s)〉, |ψ0(s)〉} system is
h1/2(s)W (s) and that the effective Ohmic coefficient is
h(s)η(s). This amplification becomes important when
clusters increase their z-polarizations and h ∼ n >> 1
(see Fig. 8) at later stages of the quantum anneal-
ing. For sufficiently large h1/2(s)W (s) & ∆Emin,
the description of the system dynamics becomes sub-
stantially non-perturbative in the spin-boson inter-
action. Equilibria of the environmental degrees of
freedom shift depending on the collective qubit-state
evolution, which in turn affects the state itself caus-
ing the polaronic effect. In this case, the adiabatic
basis of instantaneous eigenstates {|ψ1(s)〉, |ψ0(s)〉}
formed by the superposition of up and down clus-
ter orientations loses its physical significance. In-
stead, the dynamics occurs between the two diabatic
states {|φ1(s)〉, |φ0(s)〉} with the predominately op-
posite cluster orientations corresponding (roughly) to
the bottoms of the wells of the classical potential in
Fig. 4 separated by the barrier.

We introduce a unitary rotation on angle ϑ defining
a new basis of states |φ0,1(ϑ, s)〉:

|φi〉 =
∑
j=0,1

(−1)ij+j+1 cos

(
ϑ

2
− (−1)i+j

π

4

)
|ψj〉,

(26)
where i, j = 0, 1, and corresponding matrix elements

Zγγ
′

µ (ϑ, s) = 〈φγ(ϑ, s)|σzµ|φγ′(ϑ, s)〉, γ, γ′ = 0, 1.
(27)

We find the angle ϑ∗(s) that maximizes the average
Hamming distance between the states

h∗(s) = max
ϑ

1

4

2n∑
µ=1

|Z11
µ (ϑ, s)− Z00

µ (ϑ, s)|2. (28)

Then our new instantaneous basis will be

|φ∗γ(s)〉 = |φi(ϑ∗(s), s)〉, γ = 0, 1. (29)

The system dynamics is mostly a hopping between
these states associated with the incoherent cotunnel-
ing of the spins in the left cluster connecting states
with predominantly “up” (|φ∗1〉) and “down” (|ketφ∗0)
qubit configurations that are in average a Hamming
distance h∗(s) apart. (h∗(s) is shown in Fig.10.) In
essence, this approach is related to the pointer basis
idea, that the system tends to be localized in states
induced by environmental coupling [37].

The rotation angle ϑ∗(s) during the annealing is
shown in Fig.11 for different vales of h1/J . In the
later stages of the annealing the angle ϑ always ap-
proaches the value π/2 that corresponds to the adia-
batic (energy) basis with state |φ∗1〉 being an excited
state 26. In other words, quantum annealing along
the pointer states arrives at the encoded solution of
the computational problem because toward the end
of the annealing the pointer basis converges back to
eigenstates of the problem Hamiltonian.

FIG. 11. Optimal rotation angles ϑ∗ vs. s for diabatic
eigenstates (29) at different values of h1/J = 0.35 + 0.01i,
with i = 1, 2, . . . . , 13 corresponding to the curves in the
figure numbered from the bottom to the top. Red corre-
sponds to the thermalization phase, blue corresponds to
the loss of thermalization, and black corresponds to the
frozen phase described in the main text. Optimal rotation
angles only have physical meaning starting from about the
end of the thermalization phase where the spins in the
cells start to behave in a concerted manner. All angles
approach π/2 in a frozen phase corresponding to the adi-
abatic eigenstates.

We will show below that the non-perturbative treat-
ment of the effects of noise and dissipation does not
change the Markovian nature of the system dynamics
but modifies the instantaneous transition rate Γ10(s)
compared to its value ΓFGR10 (s) (22) from a single-
boson process. The non-perturbative analysis in the
rotated basis is justified within the context of the the-
ory of spin-boson interaction developed in [35]. The
individual transitions due to the coupling to bosons
are associated with so-called “blip-cojourn” pairs with
blips forming a dilute gas if the duration of the blip
τb = 1/h1/2(s)W (s) is much shorter than the charac-
teristic inter-blip distance ∼ 1/Γ10(s), with

Γ10(s)� h1/2(s)W (s). (30)

In the adiabatic basis, h(s) can reach very small values
near the avoided crossing (see Fig.10) due to the spuri-
ous quantum interference effects. In the optimally ro-
tated (diabatic) basis, τ−1

b = (h∗(s))1/2W (s) is mono-
tonically increasing during the annealing to its max-
imum value (n=8 in the problem of interest). When
the condition (30) is satisfied at the last stages of the
annealing, the gas of blips is dilute and we can apply
the Noninteracting-blip Approximation (NIBA) [35].
While this method was applied to analyze a Landau-
Zener problem in a driven spin-1/2 system coupled
to a finite temperature bath in a number of papers
[15, 16, 38], its application in the present context of
strongly correlated qubit dynamics is novel and leads
to qualitatively different features.

Before we proceed further with NIBA analysis, we
emphasize that our theory will not provide an accu-
rate treatment of the region of s where h1/2(s)W (s) ∼
Γ10, representing a crossover between the pertur-
bative treatment based on single-boson processes
and Ohmic spectral density (ΓFGR10 (s)) and non-
perturbative NIBA theory that includes low-frequency
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noise (Γ10(s)). In this intermediate region the low-
frequency noise cannot be described by the two low-
est cumulants of its special density and we are simply
lucking the experimental data for the theoretical anal-
ysis.

Our main observation is that this region does not
affect the population of the ground state at the end of
the quantum annealing. Since the quantum annealing
rate 1/tqa=50 kHz is constant, the system stays very
close to an instantaneous thermal equilibrium while

ΓFGR
10 (s), Γ10 � 1/tqa (31)

(see Fig. 8). This is a “thermalization phase” of the
annealing process. On the other hand, due to the
strong effect of low-frequency noise on D-Wave qubits
the condition

1/tqa � h1/2(s)W (s) (32)

is held almost everywhere except for the very early
stages (cf. Fig. 8). Therefore the non-perturbative
regime (30) is established well within the thermaliza-
tion phase where the (Gibbs) distribution function is
not sensitive to the noise model.

FIG. 12. In main plot, the solid line with red, blue, and
black coloring shows the dependence of tqa Γ10 (57) on the
annealing parameter s. Red corresponds to the thermal-
ization phase, blue corresponds to the loss of thermaliza-
tion, and black corresponds to the frozen phase described
in the main text. The solid green line is a plot of the
Gibbs factor for the instantaneous energy difference ~Ω(s)
between the diabatic states given in (37). Both lines are
plotted at 15.5mK. Dashed lines correspond to the temper-
ature 35mK. The inset shows the evolution of the instan-
taneous population of the diabatic eigenstate 〈φ∗0(s)|ρ|φ∗0〉.
The colors correspond to the same stages of quantum an-
nealing as in the main plot. All data are for the value of
the local field h1/J = 0.44.

At a later stage the thermal distribution can no
longer be supported due to the steep slowdown of the
transition rates as shown in Fig. (12). Then the sys-
tem enters the final “frozen” stage where the transi-
tions are suppressed over the period of the annealing
and part of the system population remains trapped
in the excited state. As can be seen in the insert
of Fig. 12, the success probability is determined by
the occupation of the ground state at the beginning
of the frozen phase determined by the Gibbs factor

exp(−(E1−E0)/kBT ) . When the temperature grows,
the transition rates dominated by low-frequency noise
change very little, while the Gibbs factor increases ap-
preciably as can be seen from Fig. (12). This in turn
increases the population of the excited state, reducing
the success of the quantum annealing as will be seen
later.

B. Non Interacting Blip Approximation

To implement NIBA in our problem we need to ex-
plicitly represent the environmental degrees of the bo-
son operators that diagonalize the free-boson Hamil-
tonian HB =

∑2n
µ=1

∑
ν ~ωµν(b†µ νbµν + 1/2):

Qµ =
∑
ν

λµν(b†µ ν + bµν), µ = 1, . . . , 2n. (33)

Here λµν and ωµν are the microscopic parameters
that will not enter into any observable directly but
will do so only via the spectral function (16) J(ω) =
2π
∑
µ(λµν/~ωµν)2δ(ω−ωµν), identical for each qubit.

We proceed by making a small polaron transformation
of the original Hamiltonian with unitary operator

U(s) = exp

[∑
γ

−Λγ(s)|φ∗γ(s)〉〈φ∗γ(s)|

]
. Here we use the notation

Λγ(s) =
∑
µν

ξγγµν (bµν−b†µν), ξγγ
′

µν =
λµν
~ωµν

Zγγ
′

µ , (34)

where the indexes µ, ν and γ run over their respective
ranges defined above and matrix elements Zγγ

′

µ are
defined in the diabatic basis as

Zγγ
′

µ (s) = 〈φ∗γ(s)|σzµ|φ∗γ′(s)〉. (35)

The system Hamiltonian after the transformation
H0 = UH0U

−1 can be written (up to identity opera-
tor) as

H0 = ~Ω (|φ∗1〉〈φ∗1| − |φ∗0〉〈φ∗0|) , (36)

where

Ω(s) = ε(s) sinϑ∗(s)− ~εpd(s) (37)

and ε = (E1 − E0)/~. The first term above cor-
responds to the system energy gap in a diabatic
(pointer) basis and the second term gives the pola-
ronic shift due to reorganization energy of the envi-
ronment. Similar to the linewidth, it is renormalized
with respect to its single qubit MRT value by a coef-
ficient d(s) reflective of a collective qubit behavior:

d =
1

4

2n∑
µ=1

[
(Z11

µ )2 − (Z00
µ )2

]
. (38)

The Hamiltonian of the coupling to environment
after the polaron transform Hint = H10

int|φ∗1〉〈φ∗0|+ h.c.
is strictly non-diagonal in the basis states and

Hγγ
′

int =

(
~∆

2
+
∑
µ,ν

Zγγ
′

µ λµν(b†µν + bµν − 2ξγγ
′

µν )

)
eΛγ′γ ,

(39)



11

where Λγ′γ = Λγ′ − Λγ and ∆ represent off-diagonal
element in the diabatic basis

∆(s) = −ε(s) cosϑ∗(s). (40)

While original NIBA calculation [35] was quite in-
volved, a very simple prescription for how to apply
it was given in [39], which we will follow below. We
start from the quantum Liouville equation for the full
system-bath density operator %(s):

i~
d%

dt
= [H0 + H̄int, %(t)], (41)

where we employed the interaction picture for bosons
H̄int(t) = exp(iHBt/~)Hint(t) exp(−iHBt/~). We
write the density matrix in the pointer basis {|φ∗γ〉}
and express its non-diagonal matrix elements through
diagonal ones as

%10(t) = %10(0) +
1

i~

∫ t

0

dτ exp

(
i

~

∫ t

τ

Ω(τ ′)

)
×
[
H̄21
int(τ)%11(τ)− %22(τ)H̄21

int(τ)
]
, (42)

where for simplicity we used a physical time t = tqas.
Here we made our first approximation and neglected
the basis dragging terms 〈φ1(s)|φ̇0(s)〉, because, as
mentioned above, we focus on the situation where LZ
transitions are negligible. Other than that the expres-
sion above is exact.

As a next step we use the fact that the initial state
for quantum annealing corresponds to %10(0) = 0. We
then plug the non-diagonal matrix elements from (42)
back into (41) and obtain the equations for the diag-
onal matrix element

d%11

dt
= − 1

~2

∫ t

0

dτ exp

(
i

~

∫ t

τ

Ω(τ ′)

)
(43)

×
[
H̄10
int(t)H̄

01
int(τ)%11(τ)− H̄10

int(t)%00(τ)H̄01
int(τ)

]
+ h.c.

and a similar equation for %00.
Our second approximation is to insert a free-bath

dynamics into the expressions for Hγγ′

int (t) by re-
placing time-dependent boson operators bµν(t) with
bµν(t)e−iωµνt. Our third approximation is to intro-
duce the decoupling anstatz for the full density ma-
trix: % = ρ⊗ρB , where ρB is the Gibbs density opera-
tor for the bath and ρ = TrB [%] is the reduced density
matrix of the qubit system. After that, the final step is
to average (43) with respect to the bath, which can be
done in a tedious but straightforward manner since av-
eraging involves only free-boson operators. We write
the resulting equation of the difference in populations
of the pointer states z(t) = ρ11(t)− ρ00(t) as

dz(t)

ds
=

∫ t

0

dt′[h(t− t′, s)− z(t′)g(t− t′, s)], (44)

where s = t/tqa and functions h and g are

h(τ, s) = 2Re[eiΩ(s)τ (C(τ − iβ, s)− C(τ, s)) and
(45)

g(τ, s) = 2Re[eiΩ(s)τ (C(τ − iβ, s) + C(τ, s)). (46)

Here we used an inverse scaled temperature β =
~/kBT .

The function C(τ, s) in the expressions above is the
central result of our analysis as it is distinct from
the conventional NIBA theory (cf. Eqs. (7.5),(7.6)
in [35]). It has the following form

C(τ, s) = F (τ, s) e−h∗(s)f(τ,s), (47)

where

F (τ, s) = b∗(s)fττ (τ, s) (48)

+ (εp c+(s)− ic−(s)fτ (τ, s)−∆(s)/2)2.

Here, the off-diagonal matrix element ∆(s) is given in
(40) and we denoted fττ = ∂2f/∂τ2. We also used av-
erage Hamming distance (28) and the overlap factor
b(s) (23) calculated in the diabatic basis using ma-
trix elements from Eq. (35). The function f(τ, s) is
related to the spectral density S(s, ω) and appears in
the context of the MRT theory of flux qubits [17, 34]
and Marcus theory [40]:

f(τ, s) =

∫ ∞
−∞

dω

2π
S(ω, s)

1− e−iωt

(~ω)2
. (49)

Coefficients c±(s) above have the form

c±(s) =
1

4

2n∑
µ=1

Z21
µ (s)(Z22

µ (s)± Z11
µ (s)), (50)

where matrix elements Z are defined in the diabatic
basis (35). Using the hybrid model of noise (17) in-
troduced in [17] the function f(τ, s) takes the form

f(τ, s) = iεp(s)τ +
1

2
W 2(s)τ2 − η

2π
lnG(τ). (51)

Here the function G(τ) is closely related to the well-
known functions Q1(τ), Q2(τ) discussed in Ref.[35] for
the case of an Ohmic environment. Its explicit form
is

G(τ) = e−i tan−1(τωc)
√

1 + (ωcτ)2, (52)

× Γ((1− iτωc)/βωc)Γ((1 + iτωc)/βωc)

Γ2(1/βωc)

where Γ(x) is the Gamma function.
If follows from (47) and (49) that the functions

g(τ, s) and h(τ, s) decay exponentially with τ on the
scale τb = 1/(h1/2W (s)) in correspondence with the
discussion above. We observe that the population
difference z(t) in (44) varies on two distinct scales
tqa >> τb. We first neglect the slow variation of z(t)
and calculate it locally at a given value of the quan-
tum annealing parameter s. In this case the integral
in (44) represents a simple convolution and the answer
is given by the Laplace transform (similarly to [35]):

z(t|s) =
1

2πi

∫
C
dλ eλt

h̃(λ) + λz(0, s)

λ(λ+ g̃(λ))
, (53)

where integration is done over the standard Bromwich
contour C. Here we explicitly introduced the param-
eter s in z to emphasize that all calculations are
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performed at fixed s. We now suppose (following

[35]) that h̃(λ) and g̃(λ) have well-defined expansions
about zero (an assumption that will be validated self-
consistently below):

h̃(λ) ' h0 + λh1, g̃(λ) ' g0 + λg1. (54)

Plugging this into (53) and then back to (44) ,we fi-
nally obtain

dz

dt
= −Γ(s)(z − tan(βΩ(s)/2)), (55)

where

Γ(s) = Γ0→1 + Γ1→0, Γ0→1 = Γ1→0e
−βε(s). (56)

Here Γ1→0(s) = g0(s) and

Γ1→0(s) = 2Re

∫ ∞
0

dτ eiΩ(s)τ−h(s)f(τ,s)F (τ, s), (57)

where the function f is given in (49) and (51) and the
function F is given in (48) and (50). Equation (55)
is a rate equation for the population difference with
Γ10 (Γ01) indicating the transition rate from the state
1 to 0 (0 to 1). This is a central result of our NIBA
theory analysis.

Following [35], the criterion of applicability of NIBA
is (cf. (54))

g1 � 1. (58)

In our case this amounts to the condition

g1(s) = 2Re

∫ ∞
0

dτ τ eiΩ(s)τ−h(s)f(τ,s)F (τ, s)� 1.

(59)
We note that this condition corresponds to Γ1→0 τb �
1 because τb = 1/h1/2(s)W (s) is the size of the inter-
val beyond which the integrand in (57) decays expo-
nentially. As it was discussed in the previous section,
we only need to inspect the condition (59) at the end
of the thermalization region. For the sake of numeral
investigation we define this by the value of s ≈ seq
where the deviation of the system state from instan-
taneous Gibbs distribution is 1%. We then compute g1

at various values of parameters with the results given
in Fig. 13. It can be seen that g1 � 1 in the entire
parameter range under study. Figure 14 shows the
probability of success versus h1 = [0.38, .., 0.6]. Tun-
neling can only be present for h1 < 0.5 when there is
an energy barrier between the local and global min-
imum (seen as a bifurcation in the semi-classical en-
ergy landscape analysis, see Fig 6). We observe a
good correspondence between the results of the NIBA
Quantum Master Equation and the D-Wave data.

C. Numerical simulation of classical paths

Our main purpose is to study multiqubit tunnel-
ing under experimental conditions with current tech-
nology for programmable quantum annealing, such as
the D-Wave II chip. One important component of this

FIG. 13. Value of the coefficient g1 in the NIBA crite-
rion (58) as a function of the local field h1/J at different
temperatures. Black, blue, green, yellow, orange, and red
curves correspond to the temperature values of 15.5, 20,
25, 30, 35, and 40 mK, respectively.

FIG. 14. Probability of success versus h1 for D-Wave
(purple ◦ marker), open system quantum numerics and
the classical paths model (SVMC, brown � marker). The
open system numerics are Redfield (doted line) and the
NIBA Quantum Master Equation (continuous red line).
The NIBA Quantum Master Equation is a surprisingly
good fit to the data. Error bars are smaller than markers.

study is the comparison to the detailed open quantum
system theory outlined in the previous section. In ad-
dition, we will compare the experimental data with
semiclassical numerics that simulate the evolution un-
der the effective potential U(q1, q2, s), as introduced in
Sec. II B. We are interested in numerical methods that
fulfill the following conditions:

• They must be constrained to quantum product
states, entangled quantum states are disallowed.

• They do not include collective state or cluster
updates. This prevents quantum tunneling to
be included in the simulation. The dynamical
equations of the numerical method must spec-
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ify only equations of motion for each individual
qubit in the product state

• The simulation must be capable of including the
effective potential U(q1, q2, s) of Sec. II B.

One such method was introduced recently in
Ref. [41] and studied in related works [42, 43]. The dy-
namics are constrained to spin vector product states,
with one spin per vector qubit. For a given product
state, we denote by θj the angle of the spin vector
for qubit j with the x quantization axis. For a given
Hamiltonian H0(s), we denote the corresponding en-
ergy by Es(θ1, . . . , θN ). The evolution consists in a se-
quence of sweeps along the Hamiltonian path {H0(s)}.
In each sweep, a Monte Carlo update is proposed for
each qubit in the following manner:

• A new angle θ′j is drawn from the uniform dis-
tribution in [0, 2π].

• The spin vector for qubit j is updated θj ← θ′j
according to the metropolis rule for the energy
difference

D = Es(. . . , θ
′
j , . . .)− Es(. . . , θj , . . .) .

That is, the move is always accepted if D is neg-
ative, and with probability given by the Boltz-
mann factor exp(−D/kBT ) if D is positive.

We call this method Spin Vector Monte Carlo
(SVMC). The initial state is chosen to be the global
minimum of the transverse field. When the spin vec-
tors of each cluster are aligned with the parameters
{q1, q2} we obtain Es(q1, . . . , q2) = U(q1, q2, s). For
low T and sufficient sweeps, the evolution proceeds
along the false minima path of Fig. 5. That is, the
numerical method at low temperature simulates the
classical paths model outlined in Sec. II B.

This numerical method allows us to study thermal
hoping between the minima of the effective potential
U(q1, q2, s). To check this correspondence, we stud-
ied the height of the energy barrier obtained from
Kramer’s theory applied to SVMC. For the potential
U(q1, q2, s) at a fixed value of s, we initialized the spin
vector state at a local minima, and watch for Kramer’s
events. A Kramer event corresponds to the arrival at
the other minima under thermal activation. Accord-
ing to Kramer’s theory, the dependence on temper-
ature for the expected number of sweeps necessary
for a Kramer’s event follows the formula exp(∆U/T ),
where ∆U is the height of the energy barrier. We
extract the energy barrier by fitting the curve of the
average number of sweeps for different T . We find
that this matches almost exactly the energy barrier
height from U(q1, q2, s) in Fig. 6 for different values
of s, see Fig. 15. We also studied other semiclassical
methods, such as a mean field Redfield model simi-
lar to Forster’s theory, and a Landau-Lifshitz-Gilbert
model related to the one studied in Ref. [44]. As we
could not recover the barrier height of the effective
energy potential U(q1, q2, s) from the Kramer’s events
with this other numerical semiclassical methods, we
will use SVMC in what follows.

FIG. 15. Analysis of the Kramer’s rate for SVMC. The
main figure shows, in a semilog scale, the average number
of sweeps as a function of temperature. We plot lines for
different points in the annealing schedule, from s = 0.217
(dark blue) to s = 0.265 (green). The embedded figure
shows the corresponding estimated energy barrier height
from the Kramer’s rate (red dots) and the semiclassical
energy barrier (blue). There is a good correspondence be-
tween SVMC and the effective energy potential.

A disadvantage of SVMC as outlined above and in-
troduced in Ref. [41] is that there is no natural choice
to relate the number of sweeps to the physical evolu-
tion time. As in other works, we will choose the num-
ber of sweeps in order to obtain a good correlation
with the probability of success of the D-Wave chip for
a benchmark of random Ising models with binary cou-
plings Jjk ∈ {1,−1} [41, 43, 45, 46]. This will allow
us to relate phenomenologically the number of sweeps
to physical time. We set the algorithmic temperature
of SVMC to be the same as the physical temperature
because we are interested in the dependence of the
success probability with temperature. There are no
important differences for the correlation with other
temperature choices. The correlation with the ran-
dom Ising benchmark for 128K sweeps (see Fig. 16) is
0.92, and the residual probabilities pSVMC − pD−Wave

have a mean of 0.05 and a standard deviation of 0.12.
This is on a par with the best values found over a wide
range of parameters. We will use 128K sweeps at 15
mK as our reference rate for the rest of the paper.

Another parameter, the so-called qubit background
susceptibility χ, has been introduced in the literature
to improve the correlations between numerical simu-
lations and the D-Wave data [42, 43]. While the phys-
ical motivation for this parameter is well understood,
it is also treated in those works as a free parameter to-
gether with the number of sweeps. Increasing values
of χ have the effect of decreasing the barrier height
for h1 < J/2. We have designed a specific problem to
bound the range of choices of χ for SVMC compatible
with experimental data. We find χ = 0.0025 to be
the value most consistent with the data for the device
used in our paper, as seen App. D. Plots that include
this choice of χ for SVMC are also presented in the
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FIG. 16. Scatter plots showing the correlation of D-Wave II data for the random Ising benchmark for different algorithmic
temperatures (in mK) and number of sweeps. We will use the parameters T = 15 mK, and sweeps = 128K in the rest
of the paper.

Appendix.

IV. EXPERIMENTAL RESULTS FROM THE
D-WAVE II PROCESSOR AND FIT TO

THEORY

A. Double well potential with two clusters

One of the most distinctive signatures of quantum
tunneling when compared to thermal hoping is the
response to temperature variations at low tempera-
tures. Consider first the quantum tunneling situa-
tion. For low temperatures compared to the gap and
when the tunneling rate is fast compared to the evo-
lution time, the final success probability is close to
one. As we increase the temperature in the range of
the gap, we expect to see thermal excitations and a
lower probability of success. Therefore, the expected
tendency at low temperatures is a decrease of proba-
bility of success with temperature. Consider now the
situation with thermal hoping. At very low tempera-
tures, the state follows the classical path along the lo-
cal minimum through the evolution. If this path does
not connect to the global minimun, the probability of
success is close to zero. As we increase the temper-
ature, we also increase the probability of a thermal
excitation over the energy barrier, and therefore in-
crease the probability of success. Consequently, the
expected tendency at low temperatures is an increase
in the probability of success for models that follow the
classical paths.

Figure 17 shows the success probability as a func-
tion of temperature for D-Wave, open system quan-
tum numerics and the classical paths model (SVMC)
for h1 = 0.44 in the Hamiltonian of Eq. (4). There
is a clear tendency for lower probability of success at
increasing temperature in the experimental D-Wave
data. The same is true of the different open sys-
tem quantum master equations. This is a consequence
of quantum tunneling. Interestingly, SVMC shows a
clear tendency for higher probability of success at in-
creasing temperature. This is a consequence of ther-
mal hoping above the energy barrier. The probability
of success of SVMC is also lower than D-Wave data

FIG. 17. Probability of success versus temperature at
h1 = 0.44 for D-Wave (purple ◦ marker), open system
quantum numerics and the classical paths model (SVMC).
The open system numerics are Redfield (doted line), Red-
field with physically estimated control noise of σh = 0.05
for the local fields and σJ = 0.035 for the couplings (doted
line with Bmarker) and the NIBA Quantum Master Equa-
tion (continuous red line). The two SVMC curves corre-
spond to SVMC (brown � marker) and SVMC with the
physically estimated control noise of σh = 0.05 for the local
fields and σJ = 0.035 for the couplings (green ♦ marker).
Error bars are smaller than markers when not seen.

at the same temperature. The probability of success
obtained with the Redfield quantum master equation
matches well the D-Wave data, and it is not affected
by the control noise of the D-Wave chip. SVMC is
ran at an algorithmic temperature equal to the phys-
ical temperature indicated in the horizontal axis, and
with 128K sweeps, as explained in Sec. III C. We plot
SVMC without control noise and SVMC with the
physically estimated control noise. Averaging over
control noise does not have a significant effect on
the probability of success for SVMC. As seen in Fig-
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ure 14, the NIBA Quantum Master Equation is a bet-
ter match to the data than Redfield. In the region
h1 < 0.5 there is an energy barrier between the local
and global minimum. In this region we see that the
probability of success for SVMC is significantly lower
than the probability of success for D-Wave and open
system quantum models.

FIG. 18. Probability of success versus temperature for
D-Wave data (◦ markers) and SVMC numerics (� mark-
ers). We plot (from top to bottom, and red to blue) h1 =
[0.38, 0.4, 0.42, 0.44, 0.46, 0.48]. Error bars are smaller than
markers. We use SVMC with 15 mK algorithmic temper-
ature and 128K sweeps, as explained in the text.

Figure 18 shows the probability of success versus
temperature for D-Wave data and SVMC numerics for
h1 = [0.38, 0.4, 0.42, 0.44, 0.46, 0.48]. The probability
of success decreases with temperature for D-Wave in
instances with a significant coherent tunneling contri-
bution to the dynamics. For SVMC the probability
of success increases with temperature in all cases. As
noted before, the probability of success form SVMC is
lower than the probability of success of D-Wave. Fig-
ure 19 shows the probability of success versus temper-
ature for D-Wave data and open quantum systems nu-
merics for the same values of h1. The D-Wave data re-
produces the decrease probability of succes predicted
by the quantum models. The probability of success
does increase with temperature for D-Wave for the
instance with h1 = 0.48, where the minimum gap is
10 MHz. The limitation in this case is strong coupling
to low frequency noise. This behavior is not captured
by standard Redfield theory. To explain it, we must
take into account the reorganization energy induced
by low frequency noise, as in standard Marcus theory.
The NIBA Quantum Master Equation does capture
this effect correctly. For this gap size coherent quan-
tum tunneling is suppressed.

FIG. 19. Probability of success as a function of temper-
ature for h1 = [0.38, 0.4, 0.42, 0.44, 0.46, 0.48]. We plot
D-Wave data (◦ markers), Redfield (dotted line) and the
NIBA Quantum Master Equation (dashed line). The main
qualitative difference is that for h1 = 0.48 the NIBA Quan-
tum Master Equation predicts a much lower probability
of success, which increases with temperature. We see the
same feature in D-Wave’s experimental data. In the NIBA
Quantum Master Equation, this is due to the suppression
of the tunneling rate by the low-frequency noise. The gap
at the avoided crossing for h1 = 0.48 is 10 MHz. The
standard Redfield model does not include low-frequency
noise.

B. Larger problems that contain the
weak-strong cluster “motives” as subproblems

In the previous sections we established that quan-
tum tunneling assists the D-Wave II processor in find-
ing the global minimum of the weak-strong cluster
probe problem. The 16 qubit problem we considered
was specifically designed to be suitable for studying
the role of tunneling by analytical, numerical and
experimental means. A generalization to a larger
number of qubits is achieved by studying problems
that contain the weak-strong cluster “motive” multi-
ple times within the connectivity graph.

A first generalized configuration we studied is a
stack of weak-strong cluster pairs with h1 = 0.4 set-
ting all connections between the left columns of the
unit cells in the Chimera graph to ferromagnetic 1
(see Fig. 20a). As the number of stacked cluster pairs
grows the success probability decreases for the anneal-
ing time of 20 µs that was used in the previous sec-
tions. This behavior is expected since the minimum
gap also decreases. When we increase the anneal time
to 20 ms the success probability grows significantly.
The increase of the probability of success for SVMC is
much slower with a proportional increase in the num-
ber of sweeps (note the logarithmic scale) even for
instances with 128 qubits, see Fig. 21.

In a second experiment we again placed a number
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FIG. 20. Larger problems that contain the weak-strong
cluster “motives” as subproblems. (a) A stack of weak-
strong cluster pairs. (b) Weak-strong cluster pairs con-
nected in a glassy fashion by setting all connections be-
tween any two neighboring strong clusters randomly to
either −1 or +1 The +1 connections are depicted in blue.

of weak-slow cluster pairs across the Chimera graph.
Then we connected the strong clusters in a glass like
structure by randomly setting all Chimera connec-
tions between neighboring pairs of strong clusters to
+1 or -1. Fig. 20b depicts a problem instance con-
structed this way. The success probabilities are shown
in Fig. 22. The fitting exponent for the D-Wave data
is −(1.1 ± 0.05) · 10−2, while the fitting exponent for
the SVMC numerics is −(2.8 ± 0.17) · 10−2. For ad-
ditional data including problems for which the strong
fields have been set to zero please refer to Appendix
C.

V. CONCLUSION

It has been a subject of heated debate whether
quantum resources in the D-Wave II processor are
employed in a manner that increases the probabil-
ity of the quantum annealing process to return low
energy solutions of the encoded optimization prob-
lem. To make progress answering this question we
studied the simplest non-convex optimization prob-
lem that only exhibits one false and one global min-
imum in a time dependent effective potential. The
time evolution is such that a path in the potentical
over product states connects the initial global mini-
mum with the final false minimum. The final global
minimum can only be reached by traversing an energy
barrier. Experimentally we found that for this situ-
ation the D-Wave II quantum annealer returns the
solution that minimizes the energy with higher prob-
ability than physically plausible models of the hard-
ware that only employ product states which do not al-
low for multiqubit tunneling transitions. On the con-

FIG. 21. Success probabilities for varying numbers of
stacked weak-strong cluster pairs as a function of anneal-
ing time for a weak local field h1 = 0.4. We show D-Wave
data and SVMC. Note that for larger number of qubits the
success probability for the D-Wave increases faster with
annealing time than for SVMC with a proportional in-
crease in the number of sweeps.

trary open system quantum mechanical models fit the
hardware data well. We developed a NIBA Quantum
Master Equation which takes high and low frequency
noise into account. It continuously rotates the basis
it employs to coincide with the basis that minimizes
the transition rate between the first two levels. In this
way we find the most robust states under decoherence.
One can think of this as working in the instantaneous
pointer basis [37, 47]. The polaron transform was used
since the interaction of the qubits with their oscillator
baths forms polaron-like quasi particles. To increase
our confidence that quantum mechanical models are
indeed required to describe the annealing dynamics
properly we added a series of experiments in which
we varied the temperature of the chip. Independent
of specific choices in the quantum models or the clas-
sical models the prediction is that the probabilities
to find the system in the lowest energy state should
decrease with increasing temperature for a quantum
system but should increase for a classical paths model.
This is indeed observed.

The correlation between D-Wave’s experimental
data and Quantum Annealing Quantum Monte Carlo
(QAQMC) has been studied in recent works [43, 45,
46]. Unfortunately, we do not have at the present time
a detailed theoretical connection between the Monte
Carlo updates in QAQMC and the open system quan-
tum dynamics. The relation between QAQMC and
quantum tunneling is also not well understood. We
show in Fig. 23 the probabilities for QAQMC as a
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FIG. 22. Success for a glass of weak-strong clusters as a
function of the number of qubits involved. D-Wave data
is plotted with purple ◦ markers. SVMC is plotted with
� markers. The fitting exponent for the D-Wave data
is −(1.1 ± 0.05) · 10−2, while the fitting exponent for the
SVMC numerics is −(2.8±0.17)·10−2. The error estimates
for the exponents are obtained by bootstrapping.

FIG. 23. Probability of success versus temperature
for D-Wave data (◦ markers) and Quantum Annealing
Quantum Monte Carlo (QAQMC) numerics (× markers).
We plot (from top to bottom, and red to blue) h1 =
[0.38, 0.4, 0.42, 0.44, 0.46, 0.48]. Error bars are smaller than
markers. QAQMC is not a good fit to D-Wave’s data.

function of temperature for different values of h1. We
use the similar parameters for QAQMC as in Ref. [45].
The probability of success for QAQMC is lower then
for D-Wave. On the one hand, the temperature de-
pendence of the probability of success is decreasing
for small h1/J ratios (big minimum gaps in the QA
spectrum). On the other hand, this dependence is op-
posite to D-Wave’s data for h1 = 0.44, the main case

studied in Sec. IV A.
Beyond the original 16 qubit probe problem we also

explore larger problems that contain multiple weak-
strong cluster pairs. We found that classical paths
models that only operate on product states do not
explain the hardware performance.

A way to think of multiqubit cotunneling as a
computational resource is to regard it as a form of
large neighborhood search. Cotunneling transitions
involving K qubits explore a K variable neighborhood.
We found that the current generation D-Wave II an-
nealer enables tunneling transitions involving at least
8 qubits. It will be an important future task to deter-
mine the maximal K for the current hardware and how
large it can be made in next generation hardware. The
larger K the easier it should be to translate the quan-
tum resource “K-qubit cotunneling” into a computa-
tional speedup. We want to emphasize that we do not
claim to have established a quantum speedup in this
work. To this end one would have to demonstrate that
no known classical algorithm finds the optimal solu-
tion as fast as the quantum process. To establish such
an advantage it will be important to study to what
degree cotunneling can be emulated in classical algo-
rithms by employing cluster update methods. How-
ever the cotunneling phenomena demonstrated here
present a big step towards what we would like to call
a physical speedup: a speedup relative to a hypothet-
ical version of the hardware operated under the laws
of classical physics.
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FIG. 24. The CJJ external phase φxCJJ and cos(φxCJJ).

Appendix A: Single Flux Qubit Hamiltonian

1. Full Flux Qubit Hamiltonian

The full Compound Josephson Junction flux qubit Hamiltonian is better expressed in terms of flux phases,
defined as renormalized fluxes φ = 2πΦ/Φ0 for any flux Φ. The Hamiltonian is [10]

−EC∂
2
φ − ECCJJ

∂2
φCJJ

+ EJ cos(φ) cos(φCJJ/2) + EL
(φ− φx)2

2
+ ELCJJ

(φCJJ − φxCJJ)2

2
, (A1)

where φ is the body flux phase to be quantized, φx is the external flux phase, φCJJ is the flux phase of the
Compound Josephson Junction and φxCJJ is the external flux of the Compound Josephson Junction (CJJ). The
energies of the different terms are given by

EC = (2e)2

2C ECCJJ
= (2e)2

2(C/2) EJ = IcΦ0

2π EL =
(

Φ0

2π

)2 1
L+LCJJ/4

ELCJJ
=
(

Φ0

2π

)2 1
LCJJ

.

The parameters are the capacitance of the Compound Josephson Junction C, the body inductance of the main
flux loop L and of the Compound Josephson Josephson LCJJ, and the effective critical current of the Compound
Josephson Junction Ic.

The median values for D-Wave’s Compound Josephson Junction flux qubits in GHz are

EC

2π~ = 0.67 GHz
ECCJJ

2π~ = 1.35 GHz EJ

2π~ = 1071 GHz EL

2π~ = 537 GHz
ELCJJ

2π~ = 11680 GHz .

The CJJ flux phase φxCJJ controls the quantum annealing evolution. Its value φxCJJ(s) as a function of the
annealing parameter for the quantum annealing schedule employed in this paper is plotted in Fig. 24.

Because ELCJJ
� EL the phase φCJJ can be assumed to be centered at the value given by φxCJJ, to a first

approximation. The approximated flux qubit Hamiltonian is then

Hs(φx) = −EC∂
2
φ + EJ cos(φ) cos(φxCJJ(s)/2) + EL

(φ− φx)2

2
. (A2)

This potential is plotted in Fig. 25a.

2. Effective qubit Hamiltonian

The effective qubit Hamiltonian is the simplified Hamiltonian Hs(φx) of Eq. (A2) projected into the two
lowest energy energy levels {|g(s)〉, |e(s)〉} of Hs(0)

Hs(φx)
∣∣∣
{|g(s)〉,|e(s)〉}

= Hs(0) + φx
∂Hs(0)

∂φx

∣∣∣
{|g(s)〉,|e(s)〉}

. (A3)
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(a) Simplified 1D potential. (b) First two eigenstates.

FIG. 25. (a) The simplified 1D potential H(φx) of Eq. (A2) for annealing parameter s = 0.278. (b) The first two
eigenvectors of the flux qubit potential for s = 0.278.

The eigenvectors of Hs(0) are symmetric and anti-symmetric superpositions of the flux up and down state in
the double well potential (see Fig. 25b)

|g(s)〉 =
1

2
(| ↑ (s)〉+ | ↓ (s)〉) (A4)

|e(s)〉 =
1

2
(| ↑ (s)〉 − | ↓ (s)〉) . (A5)

The gap between the ground state and the third excited state, depending on the annealing parameter s, goes
between 10 and 8 GHz in the region of interest. This justifies the projection into the two lowest energy levels
as long as the linear term in φx remains well below this energy.

Note that

φx
∂Hs(0)

∂φx
= Φx

Φ

L+ LCJJ/4
, (A6)

where Φx is the external flux and Φ/(L + LCJJ/4) is the persistent current operator. The eigenvectors of this
operator are the flux up and down states | ↑ (s)〉, | ↓ (s)〉, with eigenvalues ±Ip(s). This defines the persistent
current Ip(s). We denote the gap between these states by ∆s. In the basis of the up and down flux states we
write

Hs(0) + φx
∂Hs(0)

∂φx

∣∣∣
{|g(s)〉,|e(s)〉}

= −1

2
(∆sσ

x + εs(φ
x)σz) , (A7)

with εs(φ
x) = 2Ip(s)Φ

x.

3. External flux phase φx

The value of the external flux phase φx controls the strength of the local field in the single qubit Hamiltonian
of Eq. (A7). In order to keep the local field synchronized with the coupling energy as explained in Ref. [11] (see
also below), this value is chosen as

φx(s) = (−h)MAFMIp(s)
2π

Φ0
, (A8)

where h ∈ [−1, 1] is the dimensionless value of the local field (with the sign convention H ∼ hσz), MAFM is the
experimental maximum anti-ferromagnetic coupling, and Ip(s) is the expected value of the persistent current
operator defined above. In our case MAFM = 1.41 pico henries. For the current schedule in the Google-NASA
chip we have

MAFMIp(s)
2π

Φ0
≈ 10−3(4.11s+ 1.21) . (A9)
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4. Coupling between qubits

The coupling between qubits has the form [48]

JijEM(φi − φxi )(φj − φxj ) ≈ JijEMφiφj , (A10)

where Jij ∈ [−1, 1] is the dimensionless coupling. The corresponding energy is

EM

2π~
=

1

2π~

(
Φ0

2π

)2
MAFM

(L+ LCJJ/4)2
= 2.44 GHz . (A11)

In the two level qubit Hamiltonian approximation we use the persistent current operator (the expectation of
the flux divided by the inductance) to write

JijEMφiφj ≈ JijMAFMIp(s)
2σzi σ

z
j = B(s)Jijσ

z
i σ

z
j , (A12)

with the annealing function defined as B(s) = MAFMIp(s)
2. Note that this scales with the persistent

current square. This is the reason why the external field flux is chosen (using our sign convention) as
Φx = (−h)MAFMIp(s) so then

εs(φ
x) = 2(−h)MAFMIp(s)

2 = 2(−h)B(s) . (A13)

5. Coupling to the bath

The interaction Hamiltonian with the bath is dominated by fluctuations on the flux body bias. The dimen-
sional interaction Hamiltonian is

HSB = ÎδΦx =
Φ̂− Φx
L

δΦx . (A14)

Projecting into the subspace {|g(s)〉, |e(s)〉} as before we write

HSB(s) = Ip(s)σ
zδΦx =

1

2
σzQ(s) (A15)

where

Q(s) = 2Ip(s)δΦx . (A16)

The flux bias fluctuations is measured using microscopic resonant tunneling (MRT) techniques as explained in
Sec. III A. In particular MRT is performed at a point s with small tunneling amplitude ∆ < 1 MHz. Under
these conditions we obtain the parameters for the noise spectral density SMRT(ω) which is defined in Eq. (15)
as the correlation of Q(MRT). From Eq. A16

δΦx =
Q(MRT)

2Ip(MRT)
, (A17)

which implies

Q(s) =
Ip(s)

Ip(MRT)
Q(MRT) ≈ Ip(s)

Ip(1)
Q(MRT) . (A18)

This is the source of the dependence of the noise parameters in the annealing parameter, as mentioned in the
text.

Appendix B: Villain representation

In the spin basis |M,S〉 for total spin S, we introduce scaled spin operators sα = Sα/S for α = x, y, z, and
q = M/S an scaled quantum number. Denote ε = 1/S and

sz|q〉 = q|q〉 (B1)

s±|q〉 =
√
q + ε− q(q ± ε)|q ± ε〉 . (B2)
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We further introduce the canonically conjugated momentum operator p = −i ε ∂
∂q . The Villain representation

in the limit of small ε (big n) is [49, 50]

s+ = e−ip
√

1 + ε− q(q + ε) (B3)

s− =
√

1 + ε− q(q + ε)eip . (B4)

These operators are Hermitian conjugates in this representation, and we will see that they have the correct
action in coordinate representations of the wave form

|Ψ〉 =

∫
dq Ψ(q)|q〉 . (B5)

We will use the property

e−ε
∂
∂qF (q) =

∞∑
a=0

(−ε)n

n!

∂n

∂qn
F (q) = F (q − ε) . (B6)

We get

s+|Ψ〉 =

∫
dq e−ε

∂
∂q

√
1 + ε− q(q + ε) Ψ(q)|q〉 =

∫
dq
√

1 + ε− (q − ε)q Ψ(q − ε)|q〉 (B7)

=

∫
dq
√

1 + ε− q(q + ε) Ψ(q)|q + ε〉 , (B8)

and also

s−|Ψ〉 =

∫
dq
√

1 + ε− q(q + ε)eε
∂
∂q Ψ(q)|q〉 =

∫
dq
√

1 + ε− q(q + ε) Ψ(q + ε)|q〉 (B9)

=

∫
dq
√

1 + ε− q(q − ε) Ψ(q)|q − ε〉 (B10)

Ignoring factors of order ε in Eqs. (B3) and (B4) we approximate

sx =
1

2
(s+ + s−) ≈

√
1− q2 cos p . (B11)

We can check the adequacy of the semi-classical Hamiltonian even for small numbers of spins from the qual-
itative agreement of the gap of the original Hamiltonian and that obtained from the semiclassical Hamiltonian
by the standard instanton method [5, 49, 50]. From the definition of the momentum operator p = −i ε ∂

∂q we see

that ε = 1/S plays the role of ~ in the WKB approximation, and we write the WKB ansatz for the semiclassical
eigenstates Ψ ∝ exp(W/ε). The semiclassical Hamiltonian is

−m(q, t)(cos p− 1) + V (q, t) , (B12)

where the effective q dependent mass is

m(q, t) = A(t)
√

1− q2/ε . (B13)

Using the instanton technique, the gap can be estimated as

R exp

(
−1

ε

∫ qb

qa

dq p(q)

)
, (B14)

where the exponent is the Euclidean action and p(q) is the instanton trajectory between the double well minima
qa and qb. The instanton trajectory is obtained by going to imaginary time, which gives the mapping p→ −ip.
The instanton trajectory is obtained by solving

m(q, t) (1− cosh p) + V (q, t) = V (qa, t) . (B15)

We obtain

p(q) = cosh−1

(
V (q, t)− V (qa, t)

m(q, t)
+ 1

)
. (B16)

For the WKB attempt rate R we use the separation between the first and third eigenstates of the quantum
Hamiltonian, R ≈ 3 GHz, as a proxy for the gap of the possible single well bound states. Plugging into
Eq. (B14), we obtain a sufficient qualitative agreement with the exact gaps

h1 exact gap instanton gap

0.48 10 MHz 5 MHz

0.47 36 MHz 33 MHz

0.46 78 MHz 85 MHz

(B17)

The agreement improves for increasing n [5, 49, 50]
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Appendix C: Further comparisons of larger problems that contain the weak-strong cluster “motives” as
subproblems.

1. SVMC and PIMC-QA results compared against D-Wave results

Figs. 26-31 show comparisons of SVMC (with and without χ-correction) and PIMC-QA against D-Wave
results on the larger problems that contain the weak-strong cluster “motives” as subproblems. At each problem
size (40, 80, 120, 160, and 200 spins) we tested 100 random instances. D-Wave was executed with 16 gauges
at each instance. SVMC and PIMC-QA were each executed with 9 different parameters settings: 3 values for
steps and 3 values for β. The plotted results were obtained by bootstrapping over the success probabilities
obtained from individual instances and the error bars represent the bootstrapped estimate of standard error.
The standard Student’s T-test (α = 0.05) was applied to verify the statistical significance of the difference
in means between SVMC/PIMC-QA and D-Wave results. The null hypothesis was rejected at all parameter
settings except for SVMC with χ-correction and steps = 512, beta = 2.4, size = 5 on the problem without
strong fields.

FIG. 26. D-Wave and SVMC (without χ-correction) results for instances without strong fields.
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FIG. 27. D-Wave and SVMC (without χ-correction) results for instances with strong fields.

FIG. 28. D-Wave and SVMC (with χ-correction) results for instances without strong fields.

2. Fitting curves

In order to obtain a rough estimate of scaling behavior, we performed bootstrapped linear fits on the logs of
success probabilities obtained from the same instances whose results are shown in Figs. 26-31.

The resulting exponential fits in linear probability space for D-Wave are:
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FIG. 29. D-Wave and SVMC (with χ-correction) results for instances with strong fields.

FIG. 30. D-Wave and PIMC-QA results for instances without strong fields.

• Without strong fields: y(x) = e−0.0710±0.0573e(−0.0052±0.0005)x

• With strong fields: y(x) = e−0.1174±0.0498e(−0.0110±0.0005)x

Additionally, Tables I-VI show the corresponding fitting coefficients (in log probability space) done also on
the SVMC and PIMC-QA results.
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FIG. 31. D-Wave and PIMC-QA results for instances with strong fields.

steps\β 2.4 3.2 4.54

128 (−0.0083± 0.0008) ∗ x− 0.0430± 0.0823 (−0.0091± 0.0009) ∗ x− 0.0480± 0.0948 (−0.0103± 0.0012) ∗ x− 0.0440± 0.1146

256 (−0.0079± 0.0008) ∗ x− 0.0491± 0.0783 (−0.0086± 0.0009) ∗ x− 0.0561± 0.0903 (−0.0098± 0.0011) ∗ x− 0.0552± 0.1102

512 (−0.0075± 0.0007) ∗ x− 0.0533± 0.0744 (−0.0082± 0.0008) ∗ x− 0.0617± 0.0856 (−0.0094± 0.0010) ∗ x− 0.0633± 0.1050

TABLE I. SVMC without χ-correction and without strong fields

steps\β 2.4 3.2 4.54

128 (−0.0255± 0.0012) ∗ x− 0.4461± 0.1065 (−0.0280± 0.0017) ∗ x− 0.5607± 0.1471 (−0.0320± 0.0029) ∗ x− 0.8125± 0.2404

256 (−0.0242± 0.0011) ∗ x− 0.4118± 0.0961 (−0.0265± 0.0015) ∗ x− 0.5150± 0.1300 (−0.0304± 0.0026) ∗ x− 0.7377± 0.2167

512 (−0.0229± 0.0010) ∗ x− 0.3810± 0.0880 (−0.0251± 0.0013) ∗ x− 0.4689± 0.1157 (−0.0287± 0.0023) ∗ x− 0.6755± 0.1907

TABLE II. SVMC without χ-correction and with strong fields

steps\β 2.4 3.2 4.54

128 (−0.0076± 0.0007) ∗ x− 0.0402± 0.0729 (−0.0083± 0.0008) ∗ x− 0.0495± 0.0843 (−0.0095± 0.0010) ∗ x− 0.0519± 0.1026

256 (−0.0071± 0.0006) ∗ x− 0.0451± 0.0682 (−0.0077± 0.0008) ∗ x− 0.0567± 0.0790 (−0.0089± 0.0009) ∗ x− 0.0640± 0.0972

512 (−0.0066± 0.0006) ∗ x− 0.0483± 0.0639 (−0.0072± 0.0007) ∗ x− 0.0618± 0.0742 (−0.0083± 0.0009) ∗ x− 0.0726± 0.0916

TABLE III. SVMC with χ-correction and without strong fields

steps\β 2.4 3.2 4.54

128 (−0.0215± 0.0009) ∗ x− 0.3469± 0.0830 (−0.0234± 0.0013) ∗ x− 0.4257± 0.1095 (−0.0267± 0.0021) ∗ x− 0.6079± 0.1764

256 (−0.0200± 0.0008) ∗ x− 0.3166± 0.0744 (−0.0217± 0.0011) ∗ x− 0.3830± 0.0962 (−0.0248± 0.0018) ∗ x− 0.5419± 0.1535

512 (−0.0187± 0.0007) ∗ x− 0.2868± 0.0672 (−0.0202± 0.0010) ∗ x− 0.3438± 0.0857 (−0.0229± 0.0015) ∗ x− 0.4808± 0.1327

TABLE IV. SVMC with χ-correction and with strong fields

Based on these fits, the ratios between scalings of SVMC/PIMC-QA and corresponding scalings of D-Wave
were computed and are summarized as follows:

• Without strong fields
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steps\β 2.4 3.2 4.54

8 (−0.0086± 0.0008) ∗ x− 0.0186± 0.0795 (−0.0088± 0.0008) ∗ x− 0.0346± 0.0860 (−0.0089± 0.0009) ∗ x− 0.0522± 0.0934

16 (−0.0079± 0.0007) ∗ x− 0.0284± 0.0730 (−0.0080± 0.0008) ∗ x− 0.0451± 0.0791 (−0.0080± 0.0008) ∗ x− 0.0645± 0.0859

32 (−0.0072± 0.0006) ∗ x− 0.0353± 0.0674 (−0.0073± 0.0007) ∗ x− 0.0520± 0.0724 (−0.0072± 0.0007) ∗ x− 0.0746± 0.0778

TABLE V. PIMC-QA without strong fields

steps\β 2.4 3.2 4.54

8 (−0.0238± 0.0010) ∗ x− 0.3787± 0.0906 (−0.0241± 0.0012) ∗ x− 0.4207± 0.1063 (−0.0239± 0.0014) ∗ x− 0.4530± 0.1232

16 (−0.0219± 0.0009) ∗ x− 0.3369± 0.0792 (−0.0220± 0.0010) ∗ x− 0.3587± 0.0904 (−0.0214± 0.0012) ∗ x− 0.3822± 0.1036

32 (−0.0202± 0.0008) ∗ x− 0.3012± 0.0705 (−0.0200± 0.0009) ∗ x− 0.3122± 0.0772 (−0.0190± 0.0009) ∗ x− 0.3147± 0.0850

TABLE VI. PIMC-QA with strong fields

– Ratios between SVMC without χ-correction and D-Wave

∗ Min: 1.4423 (at steps = 512, β = 2.4)

∗ Max: 1.9808 (at steps = 128, β = 4.54)

– Ratios between SVMC with χ-correction and D-Wave

∗ Min: 1.2692 (at steps = 512, β = 2.4)

∗ Max: 1.8269 (at steps = 128, β = 4.54)

– Ratios between PIMC-QA and D-Wave

∗ Min: 1.3846 (at steps = 32, β = 2.4)

∗ Max: 1.7115 (at steps = 8, β = 4.54)

• With strong fields

– Ratios between SVMC without χ-correction and D-Wave

∗ Min: 2.0818 (at steps = 512, β = 2.4)

∗ Max: 2.9091 (at steps = 128, β = 4.54)

– Ratios between SVMC with χ-correction and D-Wave

∗ Min: 1.7000 (at steps = 512, β = 2.4)

∗ Max: 2.4273 (at steps = 128, β = 4.54)

– Ratios between PIMC-QA and D-Wave

∗ Min: 1.7273 (at steps = 32, β = 4.54)

∗ Max: 2.1909 (at steps = 8, β = 3.2)

Appendix D: Chi probe for SVMC

The single qubit Hilbert space modeled as a spin vector in the SVMC numerics is obtained from the two
lowest energy wave functions of the continuous flux qubit Hamiltonian with zero flux body bias (see App. A).
For sufficiently high flux body bias, these two wave functions start mixing with higher energy wave functions of
the continuous flux qubit Hamiltonian. We have checked that, up to the freezing point, the flux bias remains
low for the problems that we study in this paper. Nevertheless, a model introduced by D-Wave to deal with this
error has been treated as a fitting parameter for SVMC numerics in previous works [42, 43]. Our own derivation
of this model gives the following equations modifying the couplings and local fields of the original Hamiltonian

h′i = hi − χ
∑
j

Jijhj (D1)

J ′ij = Jij − 2χ
∑
k

JikJkj . (D2)

While these equations are slightly different from those used in other works [42, 43], their effect is the same for
the problems under study here. Explicitly, the problem becomes more ferromagnetic, and this has the effect of
decreasing the barrier height for h1 < J/2.

We want to constraint the possible values of χ consistent with SVMC when χ is treated as a fitting parameter.
To that effect we introduce a “chi-probe” problem related to the weak-strong cluster “motive”, but without a
multi-spin energy barrier. We also introduce many extra nearest-neighbor ferromagnetic couplings to increase
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J’ = 0.8                                 

J = 1                                  

h’ = 0.88

h = -1}
(a) Chi-probe problem (b) Chi-probe probabilities

FIG. 32. Problem to constraint values of χ compatible with SVMC. (a) Layout of the problem. (b) D-Wave data success
probabilities (thicker line with ◦ markers) and SVMC success probability for the “chi-probe” problems. The lines with
? markers correspond to SVMC with different values of χ, from 0 to 0.004. The minimum residual error is found for
χ = 0.0025. We use SVMC with 125K sweeps and T=15 mK, as explained in the main text.

the sensitivity cross-talk of Eq. (D2). Figure 32a shows the layout of this problem. Figure 32b shows the D-
Wave data success probabilities and SVMC success probabilities for the “chi-probe” problems. The minimum
residual error is found for χ = 0.0025, and we use this value of χ in the main text when appropriate. Because
our factor of 2 in Eq. (D2) this value of χ is roughly equivalent to a value of 0.05 for the equations used in
Ref. [42].

FIG. 33. Probability of success versus temperature for D-Wave data (◦ markers) and SVMC numerics (♦ markers). We
plot (from top to bottom, and red to blue) h1 = [0.38, 0.4, 0.42, 0.44, 0.46, 0.48]. Error bars are smaller than markers.
We use SVMC with χ = 0.0025 and 15 mK algorithmic temperature for 128K sweeps, as explained in the text.

Figure 33 shows a comparison of D-Wave data and SVMC numerics with χ = 0.0025 (compare with Fig. 18).
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As explained in the text, we choose 128K sweeps for an algorithmic temperature of 15 mK. Crucially, the
temperature dependence is still the opposite for SVMC with χ than for the D-Wave data, as expected. Figure 34a
shows the success probability as a function of temperature for D-Wave, open system quantum numerics and the
classical paths model (SVMC) for h1 = 0.44 in the Hamiltonian of Eq. (4). We include SVMC with χ = 0.0025.
The probability of success is higher for SVMC with than without χ. The reason is that the problem modified
with χ is more ferromagnetic: it has an effectively lower ratio h1/J . Nevertheless, the probability of success
for SVMC with χ is still lower than the probability of success for D-Wave. Figure 34b shows the probability of
success versus h1 = [0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.52, 0.54, 0.56, 0.58, 0.6].

(a) Probability vs. T for h1 = 0.44. (b) Probability vs. h1.

FIG. 34. Plots including SVMC with χ = 0.0025 for the double well potential problem introduced in the main text.
(a) Probability of success versus temperature at h1 = 0.44 for D-Wave (purple ◦ marker), the NIBA Quantum Master
Equations (continuous red line) and the classical paths model (SVMC). The two SVMC curves correspond to SVMC
(brown � marker) and SVMC with χ = 0.0025 (green ? marker). (b) Probability of success versus h1. Error bars are
smaller than markers.

[1] G. Gamow, Z. Physik 51 (1928).
[2] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson,

and J. Doll, Chem. Phys. Lett. , 343 (1994).
[3] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355

(1998).
[4] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aep-

pli, Science 284, 779 (1999).
[5] E. Farhi, J. Goldstone, and S. Gutmann, quant-

ph/0201031 (2002).
[6] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car,
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