JSC/EC5 U.S. Spacesuit Knowledge Capture (KC) Series Synopsis

All KC events will be approved for public using NASA Form 1676.

This synopsis provides information about the Knowledge Capture event below.

Topic: PLSS 101

Date: March 31, 2011 Time: unknown Location: JSC/B5S/R3204

DAA 1676 Form #: 29670

A PDF of the presentation is also attached to the DAA 1676 and this is a link to all lecture material and video: <u>\\js-ea-fs-01\pd01\EC\Knowledge-Capture\FY11 Knowledge Capture\20110331 G. Thomas_PLSS</u> 101\For 1676 Review & Public Release

*A copy of the video will be provided to NASA Center for AeroSpace Information (CASI) via the Agency's Large File Transfer (LFT), or by DVD using the USPS when the DAA 1676 review is complete.

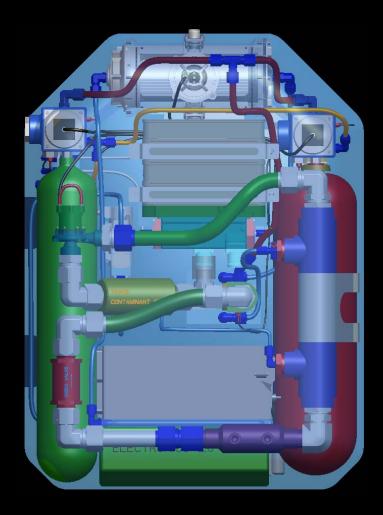
Assessment of Export Control Applicability:

This Knowledge Capture event has been reviewed by the EC5 Spacesuit Knowledge Capture Manager in collaboration with the author and is assessed to not contain any technical content that is export controlled. It is requested to be publicly released to the JSC Engineering Academy, as well as to CASI for distribution through NTRS or NA&SD (public or non-public) and with video through DVD request or YouTube viewing with download of any presentation material.

* This PDF is also attached to this 1676 and will be used for distribution.

For 1676 review use Synopsis Thomas PLSS 101 3-31-2011.pdf

Presenter: Gretchen A. Thomas


Synopsis: This presentation reviewed basic interfaces and considerations necessary for prototype suit hardware integration from an advanced spacesuit engineer perspective during the early design and test phases. The discussion included such topics such as the human interface, suit pass-throughs, keep-out zones, hardware form factors, subjective feedback from suit tests, and electricity in the suit.

Biography: Gretchen Thomas has worked for NASA for more than 20 years in PLSS technology development and integration. She has served as the PLSS architecture and integrated testing lead for EVA technology development. Her specialty areas have included carbon dioxide removal systems, thermal control systems, and system integration and analysis. Thomas earned a bachelor of science in mechanical engineering from the University of Houston, and in 2000, she received a master of science in space studies from the University of North Dakota.

EC5 Spacesuit Knowledge Capture POCs:

Cinda Chullen, Manager <u>cinda.chullen-1@nasa.gov</u> (281) 483-8384

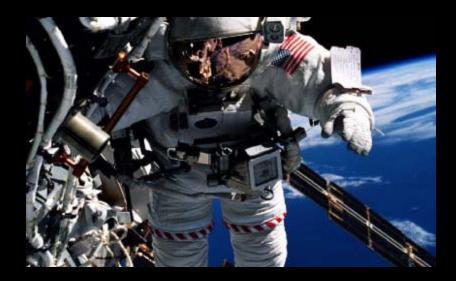
Vladenka Oliva, Technical Editor (ESCG) vladenka.r.oliva@nasa.gov (281) 461-5681

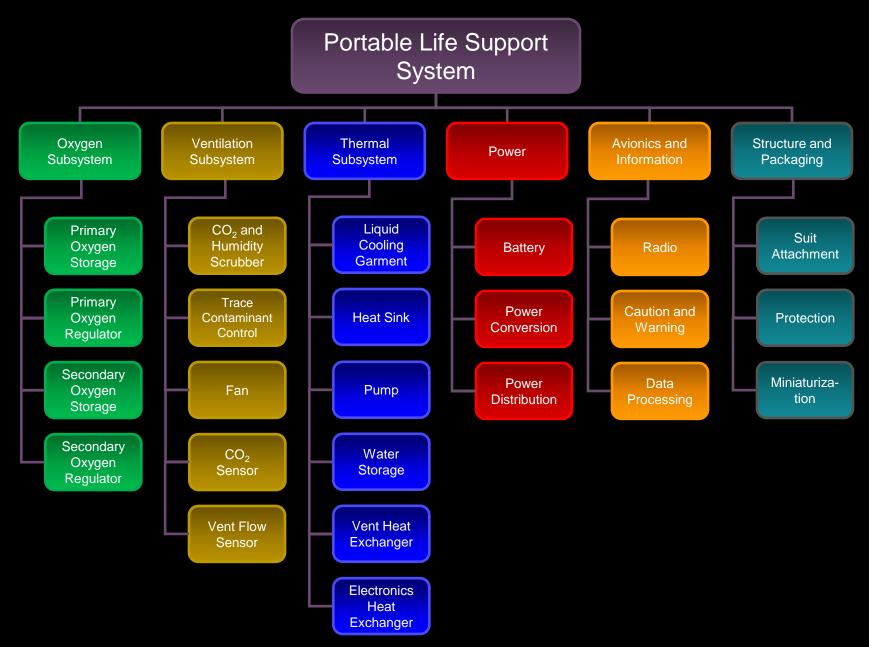
Portable Life Support System PLSS 101

EC5 / Gretchen A. Thomas March 31, 2011

The Space Suit Vehicle

- A Space Suit is a miniature one-person sized vehicle
- All of the functions of a larger space vehicle must be provided in a highly integrated system that is:
 - Independent
 - Mobile
 - Portable
 - Reliable
 - Compact
 - Lightweight




Life Support Functions of a PLSS

- Regulate suit pressure
- Provide oxygen for breathing, using 100% O₂
 - allows operation at lower suit pressures
 - increases mobility and comfort
 - easier to manage than an air mixture
- Remove metabolic by-products
 - Carbon dioxide
 - Humidity
 - Waste heat
 - Trace gases / odors
 - Particulates

Other Functions of a PLSS

- A PLSS also provides other vehicle support functions:
 - System control
 - System monitoring (for safety and alarming)
 - Power
 - Communication

Space Suit Architecture

Existing NASA Space Suit architecture is over 30 years old (1977) and has evolved from Apollo, Skylab and Shuttle technology and operations.

All current Space Suits are only compatible with low earth orbit zero-G activities and require regular ground based maintenance, resupply and monitoring.

Exploration Objectives

NASA desires exploration to destinations beyond LEO, longduration Lunar, and Mars

Beyond-LEO

Near Term Demonstration

- 0-gravity
- Regenerable
- Short Mission Duration
- Low Crew Overhead
- Very Cold Environment
- High Radiation Environment

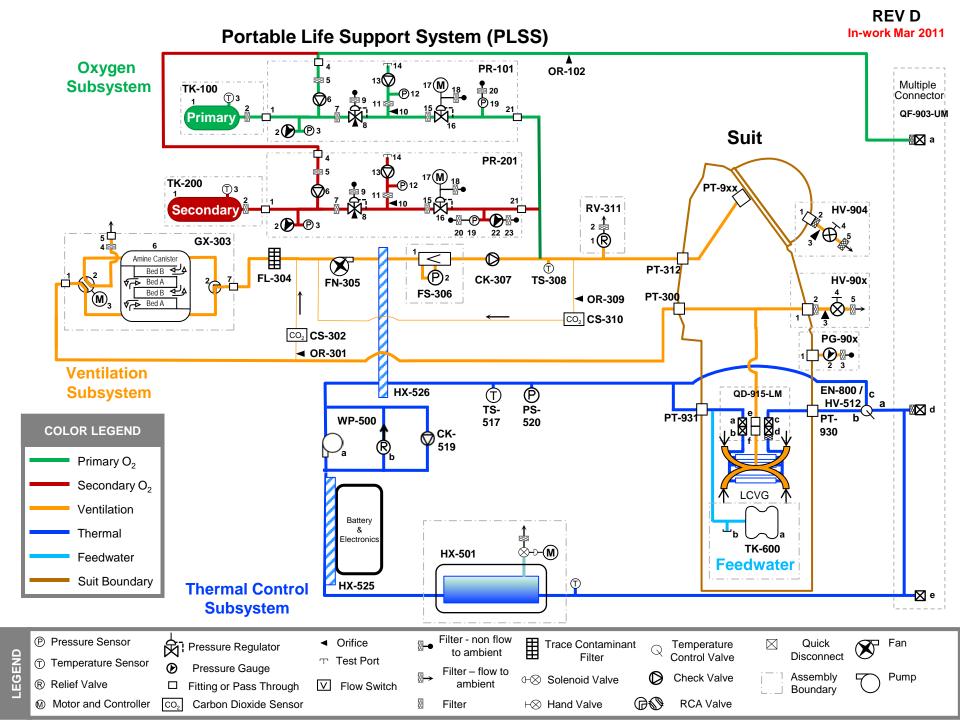
Lunar

Long Term Demonstratio

- Planetary EVA
- Regenerable/ISRU
- Lightweight
- Low Crew Overhead
- On-orbit Maintainab
- Dust
- Fall Protection

Mars

Autonomous Operation

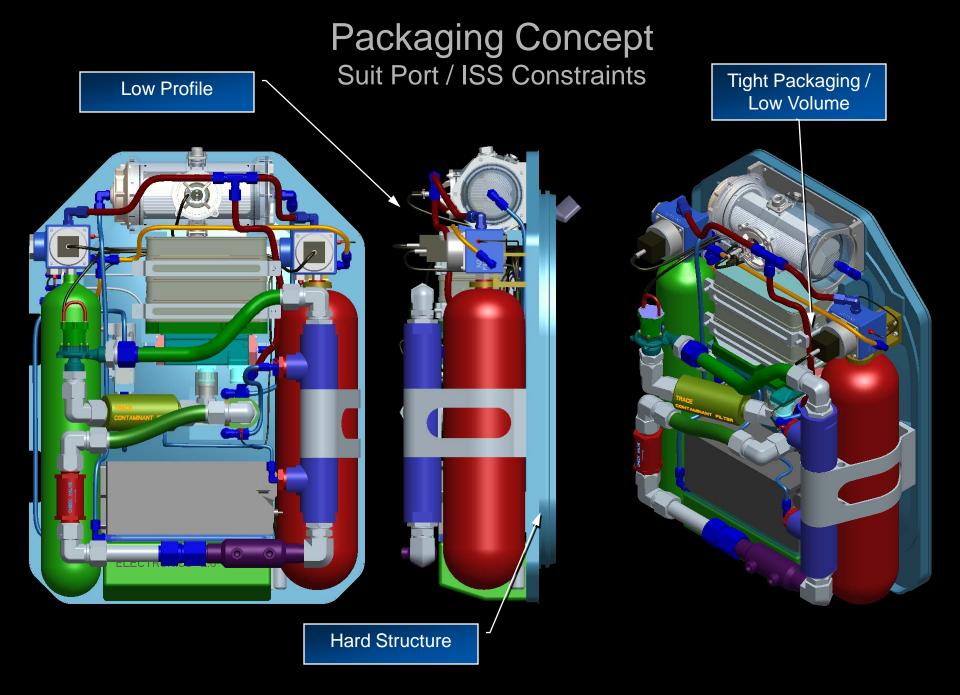

- Planetary EVA
- CO₂ Atmosphere
- Regenerable/ISRU
- Long Term Use
- Ultra-lightweight
- Low Crew Overhead
- Highly Reliable
- On-orbit Maintainable
- Dust
- Fall Protection

Historical PLSS Comparison

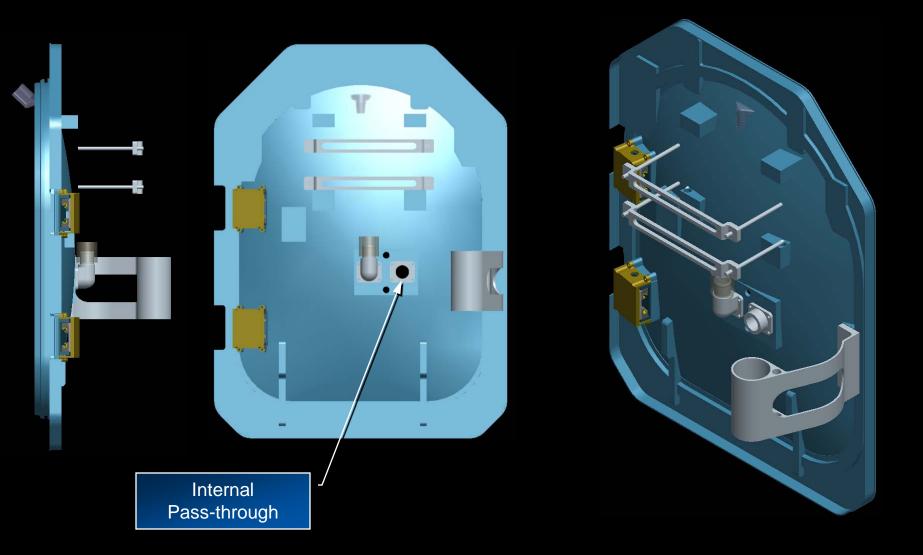
	Apollo EMU	Shuttle/ISS EMU	Lunar (CxP) EMU
Overall	~115 lbm dry	~ <mark>158</mark> lbm LiOH dry	Mass goal wet < ~108 lbm
Thermal Control	 Sublimator De-ionized water Centrifugal pump Manual temperature control No prebreathe Minimum flow to sublimator needed to prevent freezing 	 Sublimator De-ionized water Centrifugal pump Manual temperature control Lengthy prebreathe Minimum flow to sublimator needed to prevent freezing 	 Water Evaporator (SWME) Potable water Positive Displacement Pump Manual temperature control Less prebreathe than EMU No minimum flow required
Feedwater	 15 psid O₂ regulator to provide backpressure for feedwater tanks 	 15 psid O₂ regulator to provide backpressure for feedwater tanks 	 Uses suit pressure to provide tank backpressure (eliminates regulator)

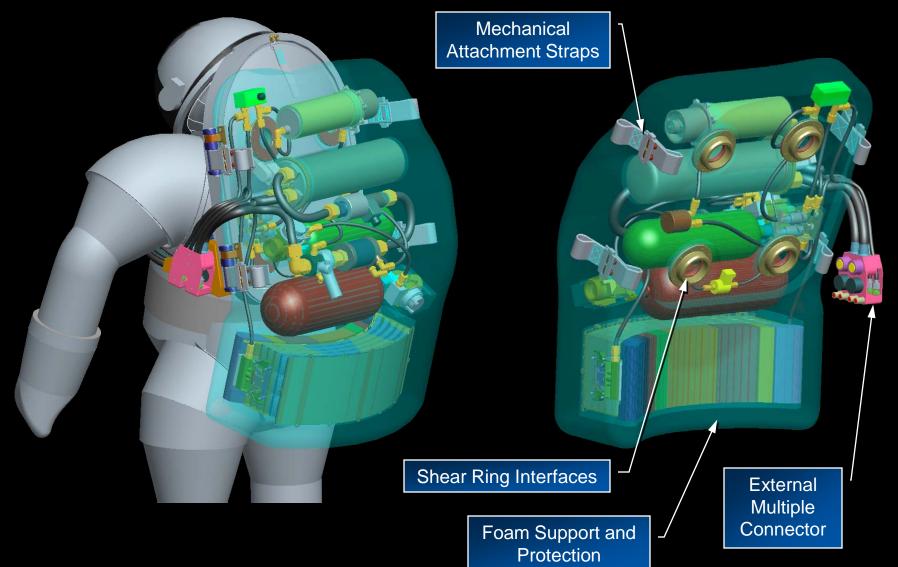
Historical PLSS Comparison

	Apollo EMU	Shuttle/ISS EMU	Lunar (CxP) EMU
CO ₂ Control	 LiOH canister (6.4 lbm) LiOH increases thermal load on PLSS thermal control unit 8-hour EVA 	 LiOH canister Metox -regenerable (14 hr & 100W & 32lbm) Both LiOH and Metox increase 	 Cycling Amine (RCA) regenerates during EVA RCA – no recharging or replacement after EVA & vents CO₂ and H₂O to
		thermal load on thermal control unit 8-hour EVA 	 vacuum Dual bed allows for transfer of heat back and forth – practically no cooling required
Heat Exchanger	 Condensing heat exchanger integrated with sublimator 	 Condensing heat exchanger integrated with sublimator 	 Non-condensing heat exchanger
O ₂	Primary O ₂ = 1420 psia	Primary O ₂ = 900 psia	Primary O ₂ = 3000 psia
	Secondary O ₂ = 5800 psia	Secondary O ₂ = 6000 psia	Secondary O ₂ = 3000 psia
	Primary O ₂ mass = 1.8 lbm	Primary O ₂ mass = 1.2 lbm	Primary O ₂ mass = 1.6 lbm
	Secondary O ₂ mass = 5.8 lbm	Secondary O ₂ mass = 2.6 lbm	Secondary O ₂ mass = 2.6 lbm
	Mechanical regulators	Mechanical regulators	Electronic regulators
		Two primary regulator set-points	Infinite set-points
Buddy Capability	 Cooling water only 	No Buddy Capability	 Cooling water and ventilation capability (deleted in current activity)

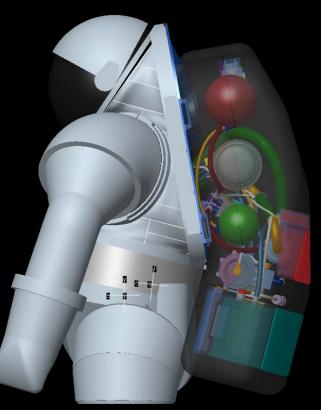

PLSS Architecture Driving Requirements

- On-back Recharge
- IVA Removable
- EVA Removable
- Buddy Mode
- Environments
 - Thermal
 - Gravity
 - Atmosphere


- Suit Constraints
 - Waist Entry vs. Rear hatch
 - Work Envelope / Reach
 - Visibility
- Vehicle Constraints
 - Resources
 - Volume
 - Up-mass



PLSS to Suit Interface Concept Mk III Hatch Constraints



Packaging Concept Mass, Maintainability, and Impact Constraints

Packaging Concept Vacuum-Removable and CG Constraints

1980s Space Station Freedom

Non-venting Resource Conservation Up-mass Constrained

Thermal
Auto Cooling Control 1
Vapor Compression Heat Pump
Ice Pack Heat Sink
Wax PCM-Radiator-Thermal Electric Heat Pump
Metal Hydride Heat Pump-Radiator

System Integration •Integrated Energy Mgmt System CO₂/Humidity Removal
Solid Amine Absorber
Pumped Liquid Membrane Contactor
Metal Oxide Absorber 1

VentilationAir Bearing Fan

Power •Fuel Cell

InformationHelmet Mounted DisplayVoice Recognition

1990s Exploration Technology

Size constrained Mass constrained Long Mission Duration

Thermal

Auto Cooling Control 2
Venting Metal Hydride Cooler
Gas-Gap Radiator
Freezable Radiator
Composite Radiator
SWME 1
Segmented LCG
Piezoelectric Water Pump
Magnetostrictive Water Pump

Oxygen •Liquid Crystal Polymer LOX Storage •Magnetic LOX Acquisition CO₂/Humidity Removal
Metal Oxide Absorber 2 & 3
Metal Oxide Flight System
Cycling Amine
Cycling Molecular Sieve
Thin Film Composite Membrane
Immobilized Liquid Membrane

Power •Fuel Cell 2

System Integration •Multiple Schematics (C, M, S-PLSS) •Multiple Packaging Concepts

2000s Exploration + Constellation Program

Mass constrained Increased Capability Maintainable Long Mission Duration

Thermal •SWME 2 •Aerogel Insulation •Liquid Cooling and Warming Garment •Piezoelectric Pump 2

Oxygen •Electronic Regulators

System Integration •Constellation Schematic •Packaging -Lightweight -Evolvable -Maintainable CO₂/Humidity Removal •Bioenzyme membrane •Cryogenic Freeze-out •Temperature Swing Cycling Scrubber •Photoionization/Laser Decomposition

Power•Zirconia Cell Electrolysis•PEM Fuel Cell

Information

Time Modulated Ultra-Wideband Radio
Electronic Cuff Checklist

2010s Technology Development

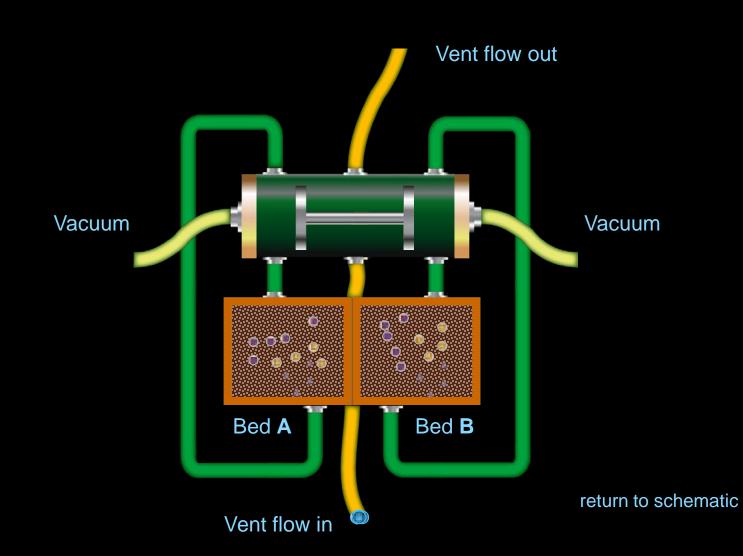
Increased Capability Cost Constrained ISS / Suit Port Compatible

Thermal •SWME 3 •Robust Pump

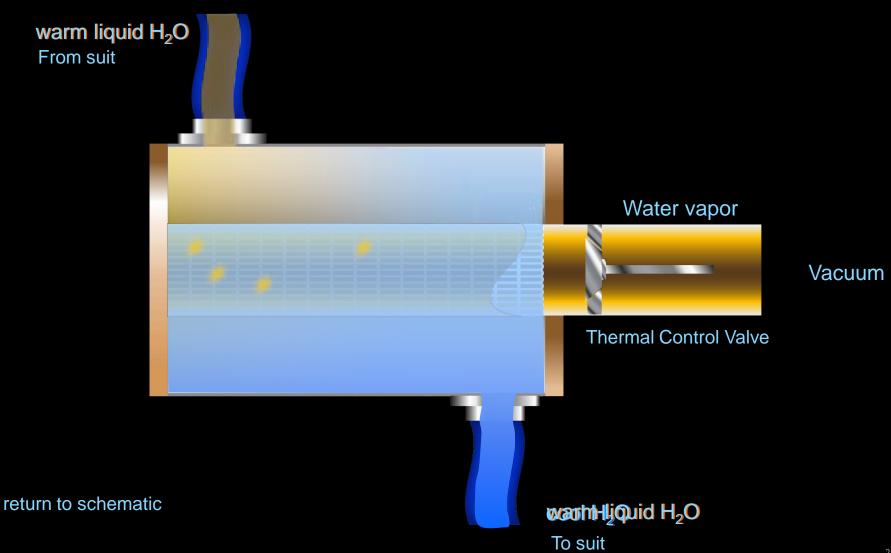
Oxygen •Electronic Regulators 2

System Integration •ISS Compatible Schematic •Integrated Breadboard •Packaging _Suit Port _Mk III CO₂/Humidity Removal •Cycling Amine 2

Ventilation •Compact Fan


PowerHigh Density Battery

Information •Heads Up Display



Rapid Cycling Amine

Space Suit Water Membrane Evaporator

