

Performance Characterization of a Landmark Measurement System for ARRM Terrain Relative Navigation

Michael Shoemaker a.i. solutions, Inc.

Cinnamon Wright, Andrew Liounis, Kenneth Getzandanner, John Van Eepoel, Keith DeWeese NASA Goddard Space Flight Center

ARRM and ARM Overviews

- Planned launch in December 2020 : Arrival at EV5 in October payloads 2022 : Return to Earth (with boulder) in late 2025
- Light times necessitate autonomous landing, boulder retrieval and ascent

ARRM Overview

Active Arm = 1

oint Angle (deg)

Credit: Alex Pini and Marcelo Gonzalez

Playback Rate: 30x 000001.000 s

F2 -111.0 101.0 SH Yaw SH Pitch 90.0 -90.0 SH Roll -90.0 90.0 90.0 -90.0 EL Pitch WR Roll 0.0 0.0 WR Pitch 90.0 -90.0 WR Yaw -5.0 45:0 ige to Landing Site: 206.81 m Horizontal Vel.: 21.61 cm/s Vertical Vel.: 5.69 cm/s

Time Until Touchdown: 1811 s

- Transition from the 5 km hold point to 200 m waypoint on pre-defined burn
- 200 m waypoint to 50 m also performed on a pre-defined burn
- 50 m to 20 m descent and asteroid spin rate matching performed with closed loop control
- No thrusting towards surface after 20 m

Overview

Overview

Landmark and Maplet Definitions

Terminology:

- Maplets small maps that tile the surface
- Landmark origin of a maplet

Overview

Step 2:

Step 2:

Step 3:

- How do errors in these parameters affect the errors in the landmark (*s*,*l*) measurements?
- These errors represent onboard navigation error, camera model errors, and asteroid model errors.

Asteroid-relative spacecraft position \mathbf{r}_{sc} , each component0.1667 mAsteroid-relative spacecraft attitude, each component0.05 degAsteroid-relative landmark position \mathbf{r}_{lm} , each component3.33 cmMaplet terrain height $z(x, y)$ 3.33 mmMaplet terrain albedo $a(x, y)$ 0.047Camera model pixel skew K_{yx} 1×10^{-5} Camera model principle coordinates (s_0, l_0) 0.1667 pixels	Parameter or state to perturb	$1-\sigma$ std applied
Camera model focal length f Camera model distortion coefficients ϵ $(1 \times 10^{-5}, 1 \times 10^{-7}, 1 \times 10^{-5}, 1 \times 10^{-5}, 0, 0)$	Asteroid-relative spacecraft position \mathbf{r}_{sc} , each component Asteroid-relative spacecraft attitude, each component Asteroid-relative landmark position \mathbf{r}_{lm} , each component Maplet terrain height $z(x, y)$ Maplet terrain albedo $a(x, y)$ Camera model pixel skew K_{yx} Camera model principle coordinates (s_0, l_0) Camera model focal length f Camera model distortion coefficients $\boldsymbol{\epsilon}$	$\begin{array}{c} 0.1667 \text{ m} \\ 0.05 \text{ deg} \\ 3.33 \text{ cm} \\ 3.33 \text{ mm} \\ 0.047 \\ 1 \times 10^{-5} \\ 0.1667 \text{ pixels} \\ 0.004 \text{ mm} \\ (1 \times 10^{-5}, 1 \times 10^{-7}, 1 \times 10^{-5}, 1 \times 10^{-5}, 0, 0) \end{array}$

Performance Characterization

• Selected 12 landmarks and tested at 50-m altitude

Performance Characterization

• The illuminated maplet data from these 12 landmarks at 50-m alt.:

• Ran Monte Carlo sims (with Latin Hypercube Sampling) of 500 runs per landmark:

L-map ID	Sample error mean [pix]	Line error mean [pix]	Sample error std [pix]	Line error std [pix]	Num. not found	Num. below thresh.	Success Rate
B01980	-0.136	0.048	0.062	0.096	42	15	0.89
B02176	-0.163	0.053	0.028	0.066	23	25	0.90
B02246	-0.111	-0.027	0.041	0.082	31	18	0.90
B01585	-0.041	0.054	0.033	0.082	36	20	0.89
B01909	-0.049	0.081	0.043	0.085	36	15	0.90
B02235	-0.139	0.068	0.025	0.071	39	12	0.90
B02690	-0.052	-0.056	0.043	0.097	52	16	0.86
B02631	-0.107	-0.069	0.038	0.076	37	13	0.90
B02642	-0.117	0.007	0.058	0.113	46	15	0.88
B01926	-0.193	0.019	0.032	0.078	49	6	0.89
B01536	-0.208	0.118	0.037	0.083	35	19	0.89
B01595	-0.114	0.111	0.041	0.080	33	25	0.88

Performance Characterization

 Repeated Monte Carlo runs at 30-sec. time steps during part of descent for 3 landmarks:

• Errors do not change significantly over these tests

Future Retina Development

- The ~90% success rate in these tests is caused by spacecraft position and attitude navigation errors causing the projected maplet data to only partially overlap.
- Also, the onboard rendering methods derived from SPC only approximate the surface shadows.

Retina (Relative Terrain Imaging Navigation) is our onboard version being developed with several modifications:

- Improved shadow predictions for onboard renderer.
- Image-space correlations (vs. mapletspace correlations) for more robust data overlaps.
- Goal is to implement on GSFC SpaceCube

Preliminary Retina results:

 Similar MC simulations resulted in 100% success rate and similar sub-pixel errors.

column error, impix

- Presented the SPC-derived methods for landmark measurements.
- Showed MC simulation results of perturbing the navigational and model parameters. Resulting errors in line-of-sight landmark measurements were acceptable, but more work needs to be done to improve success rate.
- Introduced Retina algorithms and ongoing work at GSFC for eventual flight SW implementation.