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Introduction:  Solid evidence of liquid water in 

primitive meteorites is given by the ordinary chondrites 

H5 Monahans (1998) and H3-6 Zag. Aqueous fluid 

inclusion-bearing halite (NaCl) crystals were shown to 

be common in Zag [1, 2]. These striking blue/purple 

crystals (Figure 1), which gained the coloration from 

electron-trapping in the Cl-vacancies through exposure 

to ionizing radiation, were determined to be over 4.0-

4.7 billion years old by I-Xe dating [3]. The halite 

grains are present as discrete grains within an H-

chondrite matrix with no evidence for aqueous altera-

tion that indicates a xenogenic source, possibly ancient 

cryovolcanism [4]. They were proposed to be formed 

from the cryovolcanic plumes on icy C-type asteroids 

(possibly Ceres), and were transferred and incorporated 

into the H chondrite parent asteroid following the erup-

tion event(s) [5].  

A unique aspect of these halites is that they contain 

abundant solid inclusions hosted within the halites 

alongside the water inclusions. The solid inclusions 

were suggested to be entrained within the fluid erupted 

from the cryovolcanic event(s), and were shown to be 

comprised of abundant organics. Spectrofluorometric 

study and Raman imaging of the halites have identified 

macromolecular carbon and aliphatic carbon com-

pounds [6]. In order to investigate the type of organics 

present in Zag and in particular within the fluid-bearing 

halites, we studied for the first time the amino acid 

contents of a selected mineral (halite) phase in a mete-

orite sample. 

 

Figure 1. A blue halite hosted in Zag (JSC) with tips of 

tweezer for scale. Size of the crystal is ~2 μm. 

Samples and Analytical Techniques:  We ana-

lyzed two samples of the Zag meteorite provided by E. 

Thompson [Zag (JSC): 87 mg] and the Natural History 

Museum of London, UK [Zag (NHM): 67 mg]. Zag 

(JSC) was sent to M. Zolensky directly after its recov-

ery in Morocco, and was stored in a nitrogen-filled 

cabinet thereafter. Halite crystals were subsampled 

from the meteorite samples [Zag halite (JSC): 3 mg; 

Zag halite (NHM): 2 mg] with pre-sterilized tools in a 

Class 10 clean lab at NASA JSC. Crystals from the 

meteorite sample surfaces were not used in this study, 

to avoid terrestrial contamination.  

The HCl-hydrolyzed hot-water extracts of the sam-

ples were derivatized with o-phthaldialdehyde/N-

acetyl-L-cysteine (OPA/NAC) [7]. The amino acid 

abundances and distributions were measured by ultra 

performance liquid chromatography fluorescence de-

tection and quadrupole time of flight hybrid mass spec-

trometry (UPLC-FD/QToF-MS) at NASA JSC. The 

non-hydrolyzed portions of the samples (i.e. free amino 

acids only) were also analyzed but will not be dis-

cussed here. Sterilized (500°C, 24 h) laboratory halite 

and alumina samples were subjected to the same pro-

cedures and analyzed as procedural blanks. 

Results and Discussion:  Amino acids in the sam-

ples were identified by comparing the retention time 

and measured mass to an amino acid standard mixture 

analyzed on the same day. The UPLC is coupled with 

both a fluorescence detector and a mass spectrometer 

so it is capable of performing both fluorescence and 

mass spectrometry measurments from a single sample 

injection. The UV fluorescence traces of the samples 

are presented in Figure 2. The fluorescence intensities 

of the samples are presented as relative intensities, 

which indicates a low procedural blank level, indicat-

ing that minimal contamination accrued during the 

amino acid extraction procedures in the laboratory.  

Zag (JSC) and Zag (NHM) show different fluores-

cence patterns. The amino acids in Zag (NHM) are 

generally higher in abundances than Zag (JSC), except 

for α-AIB (peak 16, Figure 3), suggesting either sample 

heterogeneity as Zag contains different lithologies 

(H3–4 matrix, H4–5 light-colored metamorphic clast, 

H5–6 silicate-darkened clast, impact-melt clast [2], and 

carbonaceous clast [8]), and/or different curation con-

ditions (JSC: nitrogen cabinet; NHM: atm air in des-

sicator). The amino acids in Zag (NHM) are predomi-

nantly proteic amino acids (e.g. glycine, aspartic acid, 

serine), and the low ratios between their L- and D-

enantiomers (D/L ratios) suggest that they are terrestri-

al contaminants. The most abundant amino acids in 

Zag (JSC) are glycine and β-alanine. Only β-alanine 

and γ-ABA were present in Zag halite (JSC) above 

blank level. The high abundances of these amino acids 

are consistent with what has been previously observed 

for thermally altered meteorites [9, 10], though terres-

trial contamination cannot be completely ruled out. 
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Although low D/L ratios were observed for the com-

mon proteic amino acids such as glutamic acid, the 

presence of amino acids that are rare or absent in ter-

restrial biology (e.g. β-ABA, α-AIB) in the meteorite 

bulk samples indicates that they are likely indigenous 

to the meteorite. 

  
1 D-Asp 5 D-Ser 9 Gly 13 L-Ala 17 D,L-α-ABA 21 D-Ile 

2 L-Asp 6 L-Ser 10 β-Ala 14 D-β-ABA 18 L-Val 22 L-Ile 

3 L-Glu 7 D-Thr 11 γ-ABA 15 L-β-ABA 19 D-Val 23 D,L-Leu 

4 D-Glu 8 L-Thr 12 D-Ala 16 α-AIB 20 EACA   

Figure 2. The 3-40 min region of the LC-FD chroma-

tograms of the OPA/NAC derivatives of acid-

hydrolyzed amino acid extracts of Zag, subsampled 

halite grains, procedural blank and 10-6 M amino acid 

standard mixture (250 pmol in column, scaled). Abbre-

viations: Asp=aspartic acid; Glu=glutamic acid; 

Ser=serine; Thr=threonine; Gly=glycine; Ala=alanine; 

ABA=amino-n-butyric acid; AIB=aminoisobutyric 

acid; Val=valine; EACA=ε-amino-n-caproic acid; 

Ile=isoleucine and Leu=leucine. 
 

 
Figure 3. Representative LC-MS chromatograms for 

selected 4-carbon amino acids of the bulk samples. 

Amino acid analyses of ordinary chondrites have 

only been reported for the LL3 chondrites Bishunpur 

and Chainpur, LL5 Antarctic meteorites LaPaz Icefield 

(LAP) 03573, LAP 03624 and LAP 03637, and the L6 

chondrites Shişr 031 and Shişr 035 [11-13]. While 

Shişr 031 and Shişr 035 were comprised of mostly pro-

teic amino acids like glycine and glutamic acid [13], 

Bishunpur and Chainpur contain a significant amount 

of γ-ABA and β-alanine. α-AIB is also present in these 

LL3 chondrites but only at a very low abundance [12]. 

Likewise, only glycine, β-alanine, and γ-ABA were 

found in the three LL5 LAP samples [11]. Some LL3 

and all L6 meteorites have undergone extensive ther-

mal metamorphism at temperatures of >500°C [2], but 

the presence of indigenous amino acids in the LL3 

chondrites suggests that amino acids may be formed 

through Fischer-Tropsch type (FTT) gas-grain reac-

tions after the meteorite parent body cooled to lower 

temperatures. β-alanine, which is a n-ω-amino acid [9], 

is also one of the most abundant amino acids in Zag, 

and its presence is consistent with its production 

through FTT reactions as the Zag parent body cooled 

down from the metamorphism (600−950°C). α-AIB, 

although present at low concentration, can also be syn-

thesized under the FTT conditions [14]. Contrastingly, 

the rarity of vapor bubbles in Zag’s fluid inclusions 

within the halite crystals suggests a low formation tem-

perature for the fluids (≤100°C; probably 25−50°C) 

[15], and the continued presence of the fluid inclusions 

indicates that the incorporation of the halites into the H 

chondrite asteroid postdate the metamorphic epoch. 

The halites are essentially free of amino acids, which 

suggest that the origin of the halites (e.g. cryovolcanic 

plumes on icy C-type asteroids) is also low in amino 

acid abundance, and limited amino acids were pro-

duced and adsorbed on the halite grains after their in-

corporation onto the Zag parent body. 
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